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ABSTRACT

Calculations have been carried through to determine

the thermal structure of the Martian atmosphere. The pri-

mary input to these calculations is provided by the follow-

ing information revealed by the radio occultation experiment

aboard the Mariner IV spacecraft:

i. A surface pressure of 5 ± 1 mb.

A scale height near the surface of 9 ± 1 km.B

and by

3. Solar flux and photoionization cross section data.

Ground-based observations and laboratory experiments

indicate a total Mars CO 2 content of 90 • 27 m-atm and an

upper limit of 70 cm-atm for 02 . We assume: a composition

of 8_/o CO 2 and 20% N 2 at the ground; a surface temperature

of 180°K, representing the temperature at the latitude of

the Mariner observation; and a mean molecular mass of 40.

These values are consistent with the Mariner scale height.
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The above data determine the gross properties of the lower

atmosphere.

The temperature above the mesopause is computed from

the second order form of the thermal conduction equation.

Radiative losses by atomic oxygen, carbon monoxide and car-

bon dioxide are included, and the variation of thermal con-

ductivity with composition is allowed for.

The principal result of the study is the temperature of

the Martian exosphere as a function of the solar heating

flux. This result is used to obtain the variation of the

exospheric temperature over a sunspot cycle. The exospheric

temperature is found to vary from 180°K at sunspot minimum

to 550°K at sunspot maximum.

A study of the relative effectiveness of CO and O as

radiators in the planetary thermosphere is carried out.

The results of this study are independent of the atmospheric

model and serve as a useful check on numerical studies. In

the present model it is found that radiative cooling by O

dominates at sunspot minimum and cooling by CO dominates near

sunspot maximum.
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INTRODUCTION

Formulation of the Problem

The principal problem treated in this paper is the

determination of the thermal structure of the Martian upper

atmosphere. The temperature distribution in the upper

atmosphere is obtained from integcation of the equation of

thermal conduction after the heating and cooling terms which

enter into this equation are determined.

Assumption of a lower boundary. Conditions in the lower

atmosphere of Mars are fairly well known up to an altitude of

50 km through the combination of observations and theoretical

studies. From 50 km to the mesopause altitude, the atmos-

pheric structure problem is complicated by the fact that

local thermodynamic equilibrium is no longer a valid assump-

tion. For this reason the mesopause altitude and temperature



on Mars have not yet been accurately determined. However,

it is very likely that the mesopause altitude lies between

70 and 90 km and the mesopause temperature is about ii0 °

to 130°K. The coupling of the upper atmosphere to the

atmosphere below the mesopause is very weak and can be

neglected. This suggests a procedure for the investigation

of the upper atmosphere in which the mesopause is taken as

a starting point for the upward integration of the equation

of heat conduction. A similar procedure was used by Jastrow

and Kyle (1961) and by Harris and Priester (1962) in studies

of the Earth's upper atmosphere. As in the case of the

Harris and Priester study, the present model assumes diffu-

sive separation of all components above the lower boundary.

By analogy with the properties of the Earth's atmosphere,

in which the mesopause altitude is 90 km but diffusive

separation sets in only above Ii0 km, it is probable that

on Mars, as on the Earth, atmospheric mixing occurs to a

height of some i0 or 20 km above the mesopause. It is not

likely that mixing extends any farther than this, because

the strong positive temperature gradient of the atmosphere

above the mesopause will necessarily suppress vertical mix-

ing on Mars as on the Earth.

In order to check the effect of these assumptions on

the major results of the present study, calculations have



been carried out in which (a) the mesopause altitude and

temperature are varied within the limits specified above;

and (b) the height of the turbopause, i.e., the height to

which mixing extends, has been set i0 km above the mesopause

altitude. It is found that these variations do not have a

significant effect on the thermal structure of the upper

atmosphere.

Iterative procedure. The heating and cooling terms

depend on the density distributions of the constituents pre-

sent in the thermosphere and these distributions in turn

depend on the temperature. Recourse must thus be made to an

iterative method of solution. A zeroeth order temperature

profile is assumed and initial density profiles computed

therefrom. These densities are then used in the integration

of the thermal conduction equation and the improved tempera-

ture profile thus obtained used to recompute the densities.

This procedure is repeated until successive integrations

give nearly the same run of temperatures.

Form of equation. The second order form of the thermal

conduction equation has been used in the numerical integra-

tions, as was done by Harris and Priester (1962) in their

time-dependent study of the terrestrial thermosphere. This
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method offers greater flexibility than integration of first

order forms of the equation, since cooling by atomic oxygen

may be accurately taken into account and the integration may

be started with zero gradient, i.e., at the mesopause. The

mass dependence of the thermal conductivity has also been

included. It is probably more important to allow for this

dependence in studying the Martian atmosphere than it is in

terrestrial studies since the principal constituent changes

from CO 2 to 0 in the upper atmosphere of Mars with a corres-

pondingly great variation in thermal conductivity.

Solar EUV flux. The heating of the upper atmosphere

results principally from absorption of solar extreme ultra-

violet (EUV) flux. The calculation of this heat input to

the thermosphere must be regarded as the main uncertainty

in obtaining the upper atmosphere temperature distribution.

The solar EUV has been measured by Hinteregger et al. (1965)

in the wavelength region below 1300_. The uncertainties in

this data are believed by the experimenters to vary from a

factor of 3 to 5 at short wavelengths to ±3_/o at wavelengths

above 250_. The longer wavelengths make the most important

contribution to the heating; hence the value of e3_/o may be

taken as a reasonable estimate of the uncertainty of the

Hinteregger data for the purposes of this study.



The solar flux data of Hinteregger et al. (1965) have

been used as the basis for calculating the heat source.

Measured values of the 10.7 cm solar flux over the previous

(1954-1965) solar cycle are used to estimate the magnitude

of variations in the solar EUV with this cycle as explained

below.

Photoionization cross sections. In addition to the

uncertainties in the solar flux data, there are differences

by a factor of two in published values of photoionization

cross sections for some of the constituents present in the

Martian the_-mosphere (Schultz, Holland and Marmo, 1963).

The present calculations generally take the average values of

published cross section data.

Heatinq efficiency. Not all the energy contained in

the incident solar EUV flux will be available for heating the

thermosphere. If an energetic photoelectron excites an opti-

cal level of an atmospheric constituent the radiation emitted

in the return to the ground state usually is lost from the

upper atmosphere. In addition, the products of photodisso-

ciation may be left in excited states whose excitation

energy is emitted as radiation which will, again, be lost to

the upper atmosphere. Finally, the energy lost in the photo-
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dissociation of CO2 may not be recovered in the upper atmos-

phere; that is, it is likely that the O atoms diffuse to

lower altitudes before recombining. The effect of these

processes on the efficiency of conversion of solar EUV to

upper atmospheric heat has been studied, for the Earth's

upper atmosphere, by Walker (1964), and has been discussed

by McElroy et al. (1965) in conjunction with a study of the

Martian atmosphere. Walker's results indicate an overall

heating efficiency of .6 for the Earth's thermosphere. This

value is used in the present study of the Martian thermo-

sphere, with an estimated uncertainty of -+.i.

Conditions o_9_nMar_____sdurinq Mariner encounter. The

Hinteregger data give an EUV flux in wavelengths below 911_

of about 3 ergs/cm2sec at the top of the Earth's atmosphere.

In July of 1965, when the Mariner fly-by occurred, Mars was

at a distance of 1.55 A.U. from the sun, which is somewhat

greater than its mean distance of 1.52 A.U. The appropri-

ate flux diminution factor is thus .41, and the flux inci-

dent at the top of the Martian atmosphere, corresponding to

Hinteregger's measurements, would be 1.2 ergs/cm2sec. The

day-night average is thus .60 erg/cm2sec and the average

value over the day hemisphere is .30 erg/cm2sec.

It must also be remembered that 1965 was a year of
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minimum solar activity and that the Hinteregger data were

obtained in July 1963, two years prior to Mariner encounter.

Solar EUV flux data for 1965 are not yet available, but

Priester (1965) reports that the EUV flux variation with

solar cycle can be well correlated with five-month averages

of the solar 10.7 cm flux. Accordingly, five-month averages

about July 1963 and July 1965 have been computed from the

mean monthly values measured by the National Research Coun-

cil, Ottawa, Canada, and published in Solar-Geophysical

Data. The monthly averages for May-September, 1963 and 1965

are given in Table i.

82.6 x 10 -22 watts/m2cps for 1963 and 76.1 x

for 1965. It is thus felt that a good working estimate of

the flux incident at the top of the Martian atmosphere in

the wavelength region below 911_ during July 1965 is .28

erg/cm2sec. This represents a value appropriate to the mini-

mum of the solar cycle. During the previous years of maximum

solar activity (1957-1958) the five-month average values of

the decimeter flux were near 250 x 10 -22 watts/m2cps (Harris

and Priester, 1962). An appropriate value for the solar EUV

at such times is therefore .92 erg/cm2sec.

The five-month means are found to be

10 -22 watts/m2cps

Radiative coolinq. In contrast to the uncertainties

in the magnitude of the EUV heating discussed above, the



Table 1

Monthly Averages of Solar 10.7 cm. Flux

May

June

July

August

September

1963

( l0 -22 watts/m2cps)

87.6

83.5

76.0

80.9

84.9

1965

(10 -22 watts/m2cps)

78.1

77.0

74.3

74.8

76.3

Mean 82.6 76.1
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effect of radiative cooling by CO2, CO, and O can be accu-

rately determined. The relative effectiveness of CO and O

as radiators has been investigated independently of the

model atmosphere studies. Expressions for the total flux

lost from a planetary thermosphere by these constituents

have been developed and the effectiveness of each under

various conditions of temperature and temperature variation

is presented. The results of this study can be used as a

check on the numerical models obtained.

Summary of Results

It has been found that the most important thermospheric

cooling mechanism is the ground state transition

O(3p I) _ O(3p 2) in atomic oxygen when the temperature of

the exosphere is _300°K. For higher temperatures the strong

temperature dependence of the flux radiated by CO causes it

to become a more effective radiator. Analytic expressions

have been developed for the total flux radiated by atomic

oxygen and by carbon monoxide. Figure 1 shows the ratio of

flux radiated by O to that radiated by CO as a function of

the temperature of the radiating zone. The curves are

labelled according to values of the scale height gradient.
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It has been assumed that the scale height varies linearly in

the radiative zone. This analytic study substantiates the

results of the numerical computations that a transition

occurs near 300°K from a temperature regime in which CO is

the principal radiator to one in which O becomes dominant.

The temperature of the Martian exosphere has been found

to vary from about 180°K to 550°K depending on the magnitude

of the heat input. The lowest temperature values obtained

correspond to an effective heating flux of .14 erg/cm2sec

and the highest values to .55 erg/cm2sec, as shown in Fig. 2.

This range of EUV flux values corresponds to the probable

variation during the ll-year solar cycle, and the range of

temperatures therefore represents the low and high values

over this period. This is shown in Fig. 3, which gives the

variation of the exospheric temperature for the Earth and for

Mars as a function of the solar cycle. At the temperature

of 550°I<, corresponding to the maximum of the sunspot cycle,

helium is lost from Mars in a time short compared to the age

of the solar system; however, atomic oxygen and neon are

retained at this temperature.

The temperature values corresponding to low solar heat-

ing flux are consistent with the Mariner IV observations

provided the ionosphere is an F 1 layer in which molecular

ions (O +) dominate. It has been shown that general consi-
z
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derations of electron production and loss, combined with

observational evidence on the slight degree of CO 2 dissocia-

tion in the Martian atmosphere lead to the conclusion that

the ionosphere is an F 1 layer. It is to be expected that a

low heating flux will lead to agreement between the calcu-

lated and observed values, since the Mariner IV observations

were made at a time of minimum solar activity.

The methods developed in this discussion are applicable

to other planetary atmospheres. In each situation the rela-

tive importance of the various heating and cooling mechanisms

must be studied. The importance of atomic oxygen cooling in

the Martian atmosphere is a consequence of the low solar

flux values. This cooling mechanism is not temperature

sensitive, however, i.e., atomic oxygen cannot act as a

thermostat as can carbon monoxide; therefore, in an atmos-

phere in which CO is absent and O is present, an increase

in heating flux will result in much higher temperatures.

This is the case on the Earth. Venus possesses an abundance

of CO2; moreover, its distance to the sun is half that of

Mars, and therefore it receives four times the intensity of

solar EUV. These circumstances make it likely that radiative

cooling by CO is the dominant cooling process in the atmos-

phere of Venus.
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ATMOSPHERICCOMPOSITION

Most estimates of the distribution of constituents in

the Martian atmosphere have been based to some extent on the

assumption of photochemical equilibrium between products

arising in the photodissociation of CO 2. The following sec-

tions will review briefly the photochemical theory and inves-

tigate its validity. The role played by diffusion in the

Martian atmosphere will be discussed from a qualitative view-

point in this section. A formal study of the diffusion equa-

tions is carried out in Appendix A.

The current theory of photochemical equilibrium and

related physical arguments lead to conclusions in direct con-

tradiction to observations of the Martian atmosphere. Recent

experimental work (Harteck et al., 1966) suggests a qualita-

tive resolution of this problem. With the present state of

affairs the density distributions must therefore be taken as

parameters of the overall problem of atmospheric composition,
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and temperature studies must be carried out using a variety

of feasible compositions.

CO2 is dissociated by solar ultraviolet radiation in

the wavelength interval ii00_ - 1800_. The photochemistry

of CO2 has been investigated by Marmo and Warneck (1961),

and by Shimizu (1963), who apply their results to the atmos-

pheres of Mars and Venus respectively. The photodissociation

of CO2 and recombination of the products CO and 0 are de-

scribed by the following set of reactions:

2.1) CO 2 + h_ - CO + 0 _i

2.2) CO + 0 + M - CO 2 + M k I

2.3) 0 + 0 + M _ 02 + M k 2

2.4) 02 + hv " 20 e2

In these reactions M represents any third body, the k's

are the three-body rate coefficients, and the _'s are the

photodissociative production rates.

are k I = 1.4 x 10 -34 6cm /sec. and

(Barth, 1964), and the

The rate coefficients

k 2 2.7 x 10 -33 6= cm /sec.

_'s can be computed from
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2.5)
k

ei(z ) = _ 2
k
1

_ 1 E _ (k)_n. (z')dz'
_ j J z 3

dk_ i(k)F (k)e

•th
is the photodissociation cross section for the i

molecular species, F (k) the flux incident at the top of

the atmosphere, and _ the cosine of the solar zenith angle.

The sum over j accounts for absorption by all the constituents

which absorb in the wavelength interval k I - k 2 , and

.th
is the number density of the 3 absorbing species. In

n. (z)
3

practice the integral over wavelength is replaced by a sum

over discrete wavelength intervals.

From the set of equations 2.1 - 2.4 we can derive the

equilibrium CO�CO 2 ratio and find

nco R
2.6) _ =

(0)

nco2 nco 2 - R

(o)
where n

CO 2

and

2.7)

is the density of CO available for dissociation

\/i n n (0)
_i (z) M CO 2

This ratio is height-dependent. At high altitudes 2.6 shows

nco/nco 2 - _ , indicating complete photodissociation of CO 2.



At the height of the CO maximum, obtained from a complete

solution of 2.1 - 2.4, it can be shown that nco/nco 2 _ 4 ,

and CO 2 is substantially dissociated at this level. The

high degree of dissociation of CO 2 is a direct consequence

of the stability of the CO molecule against oxidation, as

18

reflected in the small value of the rate coefficient

2.2.

k I of

We will tentatively accept equations 2.1 - 2.4 as an

accurate description of the Martian photochemistry in order

to discuss the role that diffusion might play in this case.

A solution of the equilibrium rate equations arising

from 2.1 - 2.4 shows that CO 2 is dissociated between 70-90 km.

on Mars, that there is a sharply peaked 02 profile in this

region and that at higher altitudes CO and 0 fall off with

the scale height of CO 2 (Fig. 4).

The slope with which these density profiles change no-

where corresponds to a fall-off according to their own scale

heights, and there is therefore a possibility that they might

be unstable. Thus, although solution of the photochemical

equations might constitute a first step in the determination

of atmospheric composition, their value as accurate represen-

tations of the actual density profiles is questionable. The

basic reason for this is that the time required for processes

such as mixing and diffusion to redistribute the various
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constituents may be short relative to the time required for

a complete photochemical cycle, so that, e.g., a CO molecule

which is photochemically created at one height in the atmos-

phere may be transported to another height before being

oxidized. The true density distributions are thus the result

of several physical processes the relative importance of

which can be investigated by comparing their characteristic

lifetimes.

The photochemical lifetime of a constituent may be de-

fined as the time which a molecule or atom could be expected

to spend in the atmosphere before suffering a chemical reac-

tion which removes it. If L denotes the loss rate of a

constituent and n its number density, the photochemical

lifetime may be defined by

n2.8) T = -
p L

The loss rates can be determined from the rate equations for

the reactions 2.1 - 2.4. For example, the rate equation for

CO is

dn
CO

2.9) dt = _inc - klnMno n
02 CO '

and the photochemical lifetime is then
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nco 1
2.10) 7 (CO) = =

p k inMn0nco k inMno

The diffusion time for a given constituent is defined

as the time required for its molecules to diffuse through a

distance equal to its own scale height. Thus

H
2.11) _D =_D '

where W is the diffusion velocity.
D

It is shown in Appen-

dix A (A.9) that, to close approximation WD = D/H , where

D is the diffusion coefficient, hence the diffusion time may

be written

H 2

2.12) 7D D

The results of comparing the photochemical and diffusive

times are shown in Fig. 5. These results show clearly that

diffusive effects can be important in determining the density

profiles of the various constituents. For example, the

curves for CO 2 and CO show that the photochemical lifetime

is nearly everywhere greater than the diffusion time, and

thus the photochemical density profiles for these constituents

are probably greatly in error. It would not be correct to
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conclude, however, on the basis of these comparisons, that

the CO 2 in the upper Martian atmosphere is only slightly

dissociated. CO 2 may follow a diffusive profile in the

upper atmosphere but still be highly dissociated. The deter-

mining factor in this regard is the ease with with the disso-

ciation products CO and 0 recombine to form CO 2. If CO is

easily oxidized we might expect CO 2 to be slightly dissocia-

ted, but, on the other hand, if CO is difficult to oxidize

then CO 2 must be highly dissociated. We might, for example,

picture a process where a CO 2 molecule at some level in the

atmosphere is dissociated. The products CO and O then dif-

fuse downward through about a scale height and recombine to

form CO 2, which is then available to replace, via upward

diffusion, that which was dissociated at the higher level.

If this picture were qualitatively accurate, CO 2 would be

only slightly dissociated. Fig. 5, however, shows that the

photochemical lifetime of CO is everywhere greater (by at

least a factor of 2.5) than the diffusion time; hence, on

the basis of 2.1 - 2.4, the C02 in the Martian upper atmos-

phere would be highly dissociated. The same considerations

apply if it is assumed that the constituents are mixed. CO 2

could follow a mixing profile and still be dissociated. The

key question is the relative ease with which CO can be oxi-

dized at about one scale height below the altitude of CO 2
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dissociation. It may be pointed out in this regard that the

02 in the Earth's atmosphere is found to follow a nearly

diffusive profile but that it is nonetheless about 90_ dis-

sociated in the upper atmosphere (Nicolet and Mange, 1954).

Atomic oxygen is, indeed, the dominant constituent throughout

an extensive region of the Earth's atmosphere and it is more

easily oxidized than CO. We must thus accept the conclusion

that, if CO is as difficult to oxidize as the rate constant

of 2.2 implies, CO2 must be a minor constituent above the

dissociation level.

On the basis of 2.1 - 2.4 the dissociation altitude in

the Martian atmosphere occurs near 80 km., but further con-

sideration of the effects of diffusion show that it would

actually occur at much lower levels. In the absence of any

reaction to remove 02 at low altitudes, there is nothing to

prevent its downward diffusion. If substantial downward

diffusion occurs, the remaining atomic oxygen would be more

readily oxidized to replace the diffusive loss of 02 . This

would hinder the oxidation of CO and, by the same token,

enhance the dissociation of CO2 at the altitude from which

diffusive loss of 02 occurred. Downward diffusion of 02 will

lower the altitude at which dissociation of CO2 takes place,

and this lowering will increase the relative abundance of CO

and 0 at higher levels.
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Acceptance of the photochemical equations 2.1 - 2.4 and

their rate constants, combined with straightforward argu-

ments concerning the effect of diffusion, thus leads to two

conclusions regarding the Martian atmosphere: it must be

dissociated down to a lower level than would be found from

photochemical calculations alone, and CO 2 can only be a minor

constituent above the dissociation level.

These conclusions are not compatible with observation.

Dissociation of CO 2 to about one or two scale heights above

the ground would leave roughly 50 m-atm, of CO 2, whereas

Owen (1966) and Spinrad et al. (1966) have reported a CO 2

content in excess of this figure.

troscopic results, Harteck et al.

In addition to these spec-

(1966) have reported exper-

imental evidence indicating that CO 2 is much less dissociated

than would be predicted from the carbon-oxygen photochemistry

alone. They attribute this to the possibility of rapid oxi-

dation of CO in the presence of trace amounts of hydrogen

compounds, e.g.,

2.13) CO + OH _ CO 2 + H .

No estimates of reaction rates for such oxidation are given.

The amount of water vapor in the Martian atmosphere is

small. Kaplan, M0nch and Spinrad (1964) give 14 • 7 _, and
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Spinrad e__ta__l. (1966) in their report on the CO2 observa-

tions mention 10-30 U for water vapor. This is an overall

abundance of _.0002_, but since the water vapor scale height

is determined by the saturated vapor pressure curve and not

by hydrostatic balance, the percentage composition will be

much higher near the ground. If the presence of water vapor

in the atmosphere is the cause of the rapid oxidation of CO,

then the CO formed in photodissociation of CO 2 at high alti-

tudes must have access to water vapor near the ground. It

is therefore reasonable to assume that the Martian turbo-

pause must be at least as high as the level at which disso-

ciation of CO 2 occurs, i.e., at or above the 70-90 km. level.

In view of the uncertainties regarding both the reactions

which constituents undergo and the effectiveness of mixing

and diffusion in redistributing them, it is necessary to

regard the atmospheric composition as a parameter to be

varied in an effort to obtain temperature and density values

compatible with observation. In the study of the thermo-

spheric temperature which follows, this is effected by assum-

ing varying degrees of CO 2 dissociation and varying altitudes

at which this dissociation occurs.



27

DETERMINATIONOF THERMOSPHERICTEMPERATURE

The temperature distribution in the upper atmosphere is

a consequence of the processes of energy deposition and loss

occurring there and of the relative altitudes at which these

processes are effective. The principal source of thermo-

spheric heating is the solar ultraviolet radiation which is

deposited via photoionization of the constituents present at

high altitudes. The detailed mechanisms by which solar

radiation is transformed into heat in the upper atmosphere

is not completely understood but a reasonably accurate

description of the heating function can be given.

The heat deposited in the thermosphere is lost by means

of conduction and radiation. Radiative loss occurs by infra-

red emission from excited states of constituents present in

the thermosphere, and this section will be mainly directed

toward deriving the functional forms of these loss terms

and studying their effectiveness.
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Conduction Eua_

The energy balance in the highest regions of a planetary

atmosphere is described by the equation of thermal conduction,

conduction being the most efficient means of energy transport

in these regions. The equation determining the temperature

may be written

3.1) Cv _ %__T_t: --%z% _K(z,T) 6T-_-f__n+ Q(z, t;T) I

where C is the specific heat at constant volume,
V

mass density, K(z,T) the thermal conductivity, T

absolute temperature, and Q

tion per unit volume and time.

p the

the

the net rate of heat genera-

The main problem in solving

3.1 is the determination of the functional form of Q(z,t;T) .

This form will normally be sufficiently complicated to

require numerical integration of the equation. As a first

step we write

3.2) Q(z,t;T) = q(z,t;T) - L(z,t;T) ,

expressing the net rate of heat generation as the difference

between heat sources q and sinks L
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General Considerations o__nnRadiative Coolinq

Cooling of the upper atmosphere occurs via conduction

of the heat deposited there and by radiative loss. The

conduction is expressed by the spatial derivatives in 3.1,

and the radiative loss is represented by the L of 3.2.

Radiative loss of heat occurs when an atom or molecule which

has been collisionally excited de-excites via emission of a

photon in an optically thin region of the atmosphere. The

form of L for a given cooling mechanism depends on whether

or not collisions are sufficiently frequent to establish a

Boltzman distribution among the energy levels from which

cooling may occur. The levels under consideration will be

so populated if the rate at which collisional excitation to

these levels occurs is much greater than the rate of radia-

tive de-excitation from them. In general terms, if we have

a two-level system under consideration, this condition may

be written

3.3) _cPl2nlnM >> A21n 2 ,

where _c is the collision rate, PI2 the probability that

a collision will result in excitation from level 1 to level

2, A21 the Einstein coefficient of spontaneous emission

from level 2 to level i, n the total particle density,
M
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and nI and n2 the particle densities in states 1 and 2.

If 3.3 holds, the radiative loss term in 3.2 is relatively

easy to determine from general statistical considerations,

but if we have the other extreme, i.e., _cPl2nlnM << A21n 2 ,

the loss rate is determined by the rate of collisional exci-

tation, which must be calculated in each specific case.

Of course, such calculation may be required in any event to

determine the validity of 3.3, but often reasonable, though

non-rigorous, arguments may be advanced in justification of

3.3 without detailed calculation of the left-hand-side.

The Einstein coefficient may be calculated from the formula

(Schiff, 1955, Chapter 15)

4e2w31 I<flrli>I 2
3.4) A21 = 3_%C 3

" i_ is the matrix element of the dipole momentwhere _,f r

operator between the initial and final states, w21 is the

angular frequency of the transition, and the other notation

is standard.

If 3.3 holds, the cooling will be said to be emission

limited. If the converse is true, the cooling will be said

to be collision limited.

In an atmosphere containing the dissociation products

of CO 2, the cooling term is given by
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3.5) T = R (COIz,T) + R (Otz,T) + R (CO2Jz,T)r s v

R (COlz, T)
r

represents emission from the CO rotational

levels, R (O Iz,T)
S

represents the cooling due to a transi-

tion between levels of the ground state term of atomic

oxygen O(3p I) _ O(3p 2) , and Rv(C021 z,T) represents vibra-

tional transition in CO 2. A study of vibrational excitation

is carried through in Appendix B with reference to the CO

molecule. This study indicates that vibrational cooling by

CO is negligible.

Rotational Coolinq b__z CO

It is generally true that rotational states are readily

populated by collisions (Zener, 1931). A Boltzmann distri-

bution is therefore assumed in what follows, i.e., the

radiation is emission limited.

The general expression for the Einstein coefficient

for spontaneous emission between adjacent rotational states

of a rigid rotator may be written

3.6) AMM'
J,J-i

4e 2 Fwj, j-l- 3 I >I 2

The matrix element appearing in this expression is most
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conveniently evaluated if the dipole moment operator is

expressed in terms of the spherical harmonics defined as in

Fano and Racah's (1959) (hereafter referred to as F.R.)

equation 5.19, i.e., we replace r by {
[i]

, whe re

is the measured dipole moment of CO. Since r and

are related by a unitary transformation, the square of the

matrix element in 3.6 may be written

_2 I<jMI_[I]Ij_I,M,>I 2 The rigid rotator wave func-

tions are the normalized spherical harmonics defined as in

F.R. Chapter 5

3.7)
%][J] (e m)YJM = M '

and the matrix element to be evaluated is thus

3.8) , = 'd [J]* [i], [J-i]
m M m M'

th
The dependence on the m compoment of the dipole moment is

included here, and these component contributions will ulti-

mately be summed. The integral in 3.8 has been evaluated by

F.R. 14.11 with the result

3.9) '/<JMI_ m[l]Ij-l'M'_ .2J J-M,(2J+l)j= i (-) (2J-l)

_[1 J-i Jj× (l'J-l'a)o . M' -M_]
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The notation (l,J-i,J) has been used as a shorthand foro

0 0 , and the V coefficients are defined in F.R.

Chapter i0. From FoR. i0.16 we have

3.10) (abc) = A(a,b,c)
o

(-l)gg:

(g-a) : (g-b) : (g-c) :

where

Hence

A (a.b C) = rL/(a+b-c):(b÷c-a):(c+a-b):j½' " (a+b+c+l) .' and a+b+c = 2g .

½

3.11) (l,J-l,_)--(-)_[ Jo (2J-l) (2J+l)

Using 3.11 and 3.9 we see that the Einstein coefficient for

the transition JM - J-I,M' caused by the component m of

the dipole moment operator is

3.12) A MM'
J,J-i

where d = e_ is the dipole moment.

due to the transition J- J-i is

The rate of energy loss

3.13)

1
m MM !

Rj = L L Aj,j_ l(m) NjM(CO)h_j,j_ 1

MM' M= -I

The number of molecules occupying the state specified
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by J,M is related to the total number in the state J by

N
J3.14) N =

JM 2J + 1 '

since the molecular energy is independent of the magnetic

quantum number M . The number of molecules in state J

is, in turn, related to the total number density N by

3.15) N
J

Ngj -ej/kT
= -- e

Z
r

where Z is the rotational partition function,r

is the statistical weight of level J , and J

energy of this level. The partition function is

gj = 2J + 1

is the

3.16) Z
r

-ej/kT

= Z(2J + l)e

J

In terms of the rotational constant B = %_/4_cI of the

molecule, the energy of the jth level can be written

¢j = hcBJ(J+l) If we define a rotational temperature by

hcB
3.17) 8 =

r k

the partition function becomes
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3.18) Zr
v

= k(2J + l)e

J

r
J (J+l)

T

For values of T such that T >> 8 in 3.18 or, equiva-
r

lently, such that ej << kT in 3.16, the summation over J

may be replaced by an integration over ej .

-i
B = 1.93 cm (Bates, 1951) and 8 _ 3°K .

r

For CO,

Thus, for all

but very low temperatures the partition function may be

written

3.19)
-¢j/kT dcj kT T

Z = _ e - = --
r u hcB hcB 8

o r

Using 3.12, 3.13, 3.15, and 3.19, the expression for the

cooling rate, 3°13, becomes

4 8 -cj/kT __ 2r _2F wj, J-i 4

3 20) Rj 3 T ca L' c j nco J e _. jv|l J-i J" = _ km M' -MJ_

MM'm

From F.R. 10.20 the sum over magnetic quantum numbers is

just unity, and Rj is given by 3.20 without the summation

factor. With _j,j_i/c = 4_BJ the cooling rate may be

written

_/kT

= 210_ 4 hc cd 2(BJ)5 -c
3.21 ) Rj 3 kT e nco
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The total rotational cooling rate is the sum of this expres-

sion over all J values. Consistent with the approximation

made in the evaluation of the partition function, T >> 3°K ,

this sum over J may be replaced by an integral. The rota-

tional cooling is thus

2104 8 _ -

3.22) Rr(CO,z) = 3 cd2B4_ i nco J J5e
o

0

rj2
T

dJ

which results in

i0 4 2

3.23) Rr(eOlz) - 2 3_ cd2B 4 nco_T@--i
r

or

-23 T 2
3.24) Rr(COlz) = 2.58 x i0 nco

-18
where we have taken d = .12 x i0 (Fowler, 1955).

Coolinq via a r_G_K__nd State TransitiQn in Atomic Oxyqen

Cooling via transitions within the ground state triplet

of atomic oxygen has been considered by Bates (1951). The

possible transitions are schematically indicated below.
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P0

P1

3P2

.028 e.v. .020 e.v.

The energies c I and c O of the 3P1 and 3P0 levels are,
3

respectively, .020 e.v. and .028 e.v. above the P2 level,

and the Einstein coefficients of the indicated transitions

-5 -i -5 -i
= AI2are A02 1.7 x i0 sec and = 8.9 x i0 sec .

Due to the greater excitation energy of the 3P0 level, the

small statistical weight, go = 1 , and the relative magni-

tudes of the Einstein coefficients, emission from the 3p
o

state is neglected relative to that from 3P1 The condition

3.3 that cooling be emission limited is thus

AI2 gl -el'/kT
3.25) PI2 >> e

_cnM q2

Using _c _ 5 x i0 -I0 cm3/sec , as quoted by Bates, and

writing the equation in terms of P21 rather than P12 we
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have, with gl = 3 , g2 = 5

3.26) P21 >>
1.0 x 105

n M

By citing experimental results on reactions similar to

3.27) O(3P2) + M _ O(3p I) + M - 0.020 e.v.

> l0 -4 and
Bates argues that it is reasonable to assume P21

thus that 3.26 should hold up to total densities _<i09 cm -3

We will tentatively assume that radiation by atomic oxygen is

effective at altitudes below that at which the density is 109 .

This point will be re-examined after radiative transfer in

the 62_ line is considered. The radiative cooling term for

oxygen thus has the form

3.2s) Rs(OIz,T) = elAl2 n(Ol3Pl)

-e i/kT

= ¢ IAI2nO (z) _ gle o/kT i-e i/kT -¢

g 2+g ie +go e

10 -18
Rs = 2.85 x n o f(T)3.29)
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where

3.30) f(T) =

-c i/kT
gl e

-c i/kT -6 o/kT
g2+gl e +goe

The factor

0 and _ .

The temperature dependence of 3.29 is not very strong.

f(T) varies between 0 and 1/3 for T between

The ratio of CO to 0 radiation rates is seen

from 3.24 and 3.29 to be

3.31)
R T2r = 1.0 x 10 -5 ncO

Rs n o f (T)

This ratio is shown in Fig. 6 as a function of T for

various values of nco/n 0

A simple comparison of R with R as in 3.31 does
r s

not necessarily give an accurate description of the rela-

tive effectiveness of these constituents in cooling a

planetary thermosphere. This is due to the fact that

radiation is only effective from about one optical depth

and the overlying number densities of CO and 0 which corres-

pond to unit optical depth are quite different, as will be

established below. The comparison is made at this point,

however, to indicate the possibility of a range of physical

circumstances under which atomic oxygen may be a more effec-



4o

O

Z

_J
O
O

I0.0

I0

.I0

Ol

0

I I I I I

0.01

I I I i I

200 400 600 800 I000 1200 1400

TEMPERATURE

1600

Fig. 6. Comparison of CO and O radiation rates. The

curves are labelled according to the assumed ncJn O ratio.
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Vibrational Coolinq b__ CO and CO 2

The possible importance of CO as a cooling agent in the

Martian atmosphere was first pointed out by Chamberlain

(1962). In his original paper on the subject he assumed

that radiation from the first vibrational state of CO was

the principal cooling mechanism and write the cooling term

as

3.32) R (CO z,T) = N 2 (z)f (CO) q21hve -hV/kT
v

where N is the total number density, f the fraction by

the rate coefficient for deactivation of
volume of CO, _21

the first vibrational level and h_ the vibrational quantum.

This calculation was, however, based on a vibrational deacti-

vation coefficient which was too large by many orders of

magnitude. Recently McElroy et al. (1965) revised the earlier

work and computed a temperature profile based on cooling

from both the i st vibrational and the rotational levels of

CO. They concluded that vibrational transitions are insig-

nificant and that radiation from the rotational levels of

CO is the principal cooling mechanism. This calculation

assumed a constant _ which was obtained by extrapolation
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from an experimental, high-temperature value. The full

temperature dependence of the vibrational activation coeffi-

cient _12 is known from the theoretical considerations of

several authors (Jackson and Mort, 1932; Schwartz and Herz-

feld, 1954).

The solution of the problem given in Appendix B differs

from that of these authors chiefly in the adoption of the

scattering matrix point of view, as developed by Blatt and

Biedenharn (1952) and employed by Arthurs and Dalgarno (1960)

and Davison (1961) in connection with their treatment of

rotational transitions. This treatment proves the inference

of McElroy et al. (1965) that cooling by CO vibrational

transitions is negligible in the Martian atmosphere, even

when full temperature dependence is included.

The previously cited observational evidence {section 2)

indicating a great abundance of CO 2 in the Martian atmosphere

implies that radiative cooling by this constituent may be

important. Chamberlain and McElroy (1966) have considered

cooling by the v 2 bands near 15_ in some detail, including

the effect of reabsorption of radiation. They find the

power radiated to be
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-22!

3.33) R (c0.1z)--19 x 10
v z'

- (@/T)- (82.8/T I/3)
n n e

m CO 2

xL1-(I+x) e-X-_

@ = hv/k = 725 and X = 1 x 109/nco2(l+A/nmg) , where A

is the total transition probability and _ the vibrational

deactivation coefficient. The term in brackets on the

right-hand-side of 3.33 is Chamberlain and McElroy's correc-

tion for reabsorption.

Optical Dep_Lh

Having obtained expressions for the source and radia-

tive loss terms, the simplest procedure would be to substi-

tude these in the thermal conduction equation 3.1 and

integrate to find the temperature profile T(z) This

might lead to serious error. No provision has been made

for the possibility that infrared photons, once emitted

via one of the loss mechnaisms just discussed, might be

re-absorbed, and failure to take this into account will

cause an overestimate of the loss te_'ms, especially aL

lower altitudes. To account for the possibility of reabsorp-

tion we will suppose that radiative Loss is ineffective
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below the altitude at which radiation of the frequency

-i
considered would fall to e of its initial value if it

were incident at the top of the atmosphere and is completely

effective above that level, i.e., we take unit optical depth

in the atmosphere as the dividing line.

We will obtain an expression for the optical depth in

a Doppler-broadened line from the equation of radiative

transfer. Consider radiation of intensity I quanta/cm 2

ster° incident on a slab of thickness dz containing

n particles/cm 3.

I
V

d_
S

dz

We wish to determine the change in beam intensity in the
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direction specified by the element of solid angle d_ due

to emissions and absorptions between two energy levels which

will be denoted by subscripts 2 (upper level) and 1

(lower level). The spontaneous emission occurs equally in

all directions and is given by

d_
3.34) n2A21 _ ,

where n2

energy state, and A21

spontaneous emission.

is the number density of particles in the upper

is the Einstein coefficient for

The factor d_/4n is the fraction of

emitted radiation which enters the solid angle d_ . Stimu-

lated emission occurs in the direction of the incident beam

and is given by

3.35) n2B21_V

where B21 is the Einstein coefficient for stimulated

emission and

beam (quanta/cm3).

is the radiation density in the incident

The absorption is given by

3.36) nlBl2_

The decrease in the number of particles per unit time in the
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upper energy level is -dn2/dt . Each transition resulting

in a decrease in n2 corresponds to the addition of a pho-

ton to the radiation field. Since these photons are emitted

over a finite frequency interval, the total decrease in n2

corresponds to an increase in the photon intensity inte-

grated over frequency and direction, i.e.,

3.37)
dn2
dt , _-_ dv I v

The intensity of the radiation field is in general a broad

function of frequency, but the change in this intensity due

to the transitions considered here occurs over a narrow

frequency interval. If the spectral line due to these transi-

tions is Doppler-broadened and is the intensity in the
I_ o

frequency range d_ at the line center, we may write

2

3.38) dv = I e d(v-v o) -
• O V 0 O

where eD is the Doppler width of the line. At the low pres-

sures prevailing in the Martian thermosphere the 62_ oxygen

line and the CO rotational lines will be Doppler broadened.

Defining the photon flux by (where U = cos O)

_ 1 .l'_ I_ d_3.39) F v

and equating the right hand side of 3.37 to the net decrease
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in the number of particles in the upper energy state, we

have (after substituting 3.38 and 3.39 in 3.37 and dropping

the subscript o on _ )

dF_
3.40) _ _D dz n2A21 + n2B21Pv - nlBI2P

The energy density and intensity are related by

3.41)

and the relations between the Einstein coefficients are

3.42)
B21 _ 6 BI2 _ g2

!

A21 'o ' B21 gl

where is a function of frequency to be specified later

and g2 and gl are the statistical weights of the upper

and lower energy states. Using 3.41 and 3.42 the radiative

transfer equation 3.40 may be written

dF 4,_ g2 n

1 v _ 1 A21 n2_l + v(1 1
3.43) 4 dz 2_3-_7_ _D _ gl n2)I_i

If we assume the excited levels are thermally populated then

nl gl e 12/kT g2 -e2/kT

- e and n 2 - e n
3.44) n2 g2 z
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where z is the partition function and ¢ = ¢ - ¢ with
12 1 2

e I and ¢2 the energies of states 1 and 2 . The function

8_ and the Doppler width eD are given by (Goody, 1964)

6

3.45) c 8n[vl
 F2kT ½

' C_'D = CL'-'m-- _ '

where T is the temperature and m the particle mass.

Using 3.44 and 3.45 we may finally write the equation of

transfer as

3.46) 1 dF_ - +
4 dz _DnI_ £D n

where

and

1
3.47) 0 -

D 4n3--72

g2A21F m ]½Fc 3 -¢i/kT -¢21/kT

T- 7-L H LS] e I I - e -I

3.48)
g2A21[ • m _½1-c3 -¢2/kT

eD-2_3-!/22 _--_T-[._J L g] e

The ratio 8D/OD is just the Plank function as would be

expected since local thermodynamic equilibrium has been

assumed. The quantity CD is the absorption cross section in

the line. The optical depth T is defined by

3.49) d_ = -ODndZ ,
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where dz is an increment of altitude and is taken in the

vertical direction. If the constituent n is distributed

in diffusive equilibrium in an isothermal atmosphere, the

optical depth is

3.50) T = _ n HD

and thus unit optical depth occurs at an altitude where the

overlying number density is

1
3.51) n H -

_D

For the 62_i oxygen line we may evaluate the constants in

3.47 to find

-228/T
-16 l-e 1

3.52) _ (O) = 8.9 x i0

D 5+3e-228/T+e-325/T

and the overlying number density at unit optical depth, for

T = 300°K , is therefore

. 1017 -2= 2 4 x cm3.53) (nH) _=i

We recall our initial assumption that the atomic

oxygen levels were in thermodynamic equilibrium which was

in turn based on the assumption that radiation in the 62u

line was effective at altitudes where the total number

density was >109 cm 3 That radiation does commence below

this level is obvious from 3.53 since an atomic number
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density of 109 would represent unit optical depth in the

62U line only if the scale height were _ i000 km.

In the case of carbon monoxide we are considering transi-

tions between _otational states J _ J-i . We will take the

optical depth in carbon monoxide to equal the optical depth

in the rotational line in which most energy is transferred.

Since the population of the jth rotational state satisfies

the proportionality

3.54) nj _ (2J+l) e

0

rJ (J+l)
T

we readily find that the rotational state with the greatest

occupation is specified by

3.55)

½

L2-- r 

The Einstein coefficient for the transition J _ J-i may

be obtained by summing the right hand side of 3.12 over

magnetic quantum states. We find

_ 4 3d 2 j4
3.56) AJ,j-I 3_ (4wB) 2J+l '

and with J = JMAX we have
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3/2
27rT3 B3d2

51

The absorption cross section in this case is

4_3/2 d2 m ½ @r ½
 o co,

- (2@r/T) ½

-e

or, to close approximation,

8_ 3/2 d 2rm_ @r

3.59) OD (cO) - 3j_ _n L_T..1½ T -

Evaluating the constants we find

3.60) _D(CO) -

-13
1.35 x i0

T3/2

This expression was given by McElroy et al. (1965). At a

temperature of T = 300°K unit optical depth occurs at

an overlying density of

1016 -23.8 x cm
3.61) (nil) v=l

Comparison of Total Flux Radiated by CO and O

As has been stated, comparison of the power radioed b_

O and CO does not provide a realistic comparison of the

relative effectiveness of these constituents as cool_ng
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agents. Comparison of the total flux radiated by each con-

stituent will permit a more realistic evaluation of the

relative importance of each radiator.

We will assume that in the radiation zone the scale

height varies linearly so that

3.62) H(z) = H + 8z
o

where H is the scale height at the bottom of the zone and
o

B is the scale height gradient. The number density of a

given constituent is then

3.63) n(z) -

z dz

n T z H
o o o

T(E-_ e

The optical depth is given by

z

3.64) T(z ) =-I n(z)_D(T)dzo J
Z
O

where we assume that z I is the top of the radiating zone

and that the optical depth above this level is negligible.

Using 3.52 and 3.60 for the absorption cross sections in O

and CO and 3.63 for the number density, we find the follow-

ing expressions for the optical depths in these constituents:

3.65) 7 (O) -

CDo (O) _. (2+ 8OX)/2 8OX

1 + 80/2(noHo)oX[ 1 - AOX ]
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3.66) T (CO) =

_D (CO)
O F

1 + 3BC -/2(nOHO)cOl-lO"

(2+33C0)/23CO

ACO ]

where _, = To/T 1 and To ' T 1 are the temperatures at the

bottom and top of the radiating zone. The single subscript

zero indicates the corresponding quantity is evaluated at

z . The subscripts OX and CO stand for atomic oxygen
O

and carbon monoxide. The total flux radiated by each con-

stituent (ergs/cm2sec) is given by

3.67)
z 1

F R = j" R(z,T)dz
Z

O

where R(z,T) is given by 3.29 for oxygen and 3.24 for CO.

We find for the flux radiated by these constituents above

an altitude z
O

3.68)

l/Sox,
FR(O) = 2.8 x 10-18(noHo)oxf(To)I - bOX I

o (1-23CO)/8CO_
2.58 x 10 -23 (noT H o)cO 1

3.69) FR(CO) = 1 - 2_C0 [ - ACO _j

The slowly varying function f(T o) in 3.69 was not included

in the integration 3.67 but was removed from the integrand at

the outset. The expression 3.69 was given by McElroy et al.

(1965) . The product n H in 3.68 and 3.69 may be evaluated
O O

for % = 1 from 3.65 and 3.66.

3.70)
-3

FR(O)_ = 9.6 x i0 (i + T)E (To)T

The total radiated flux is then

l/ ox
i - _OX

-i

(2+ BO X)/2 BOX_J

i - _OX



3.71)

where

(1-28CO)/Bc O

FR(CO) = 9.5 x i0 -II 2+3_CO T 7/2FI-ACO
i-2_CO o L (2+3_CO)12_CO _-]

I-ACO

E(T ) = i/(e 228/To - i) .
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O

It is of interest to note that the temperature depen-

dence of the flux radiated is stronger than that of the

power radiated. I There are two distinct physical reasons for

the temperature dependence of the radiated flux. One is the

fact that the lines in which radiation occurs are Doppler

broadened. As the temperature increases the absorption

cross section in the center of a Doppler-broadened line

-1/2
falls off as T and this decrease in absorption cross

section permits a photon emitted near the line center to

escape more readily. The second temperature dependence

results from the fact that, as the temperature of a region

rises, the thermal population of the state or states from

which radiation occurs increases and, conversely, the

ground state population decreases. A photon traversing this

region thus has a relatively greater chance of stimulating

radiation from an upper state and a relatively smaller

chance of being absorbed. This temperature dependence is

also present in the expressions 3.52 and 3.58 for the

absorption cross section in the center of the line. In

each case this effect is responsible for, roughly, a I/T
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dependence of the cross sections and is thus more important

than the Doppler broadening. We could thus anticipate an

approximate T3/2 increase in temperature dependence of the

total flux radiated by a constituent over the expression

for the power radiated by the same constituent. This T3/2

is present in the expressions 3.70 and 3.71 since, in 3.70

E(T ) _ T for T _ 300°K.
o o o

If we neglect the difference in temperature at unit

optical depth in atomic oxygen and carbon monoxide and assume

T refers to the temperature at which carbon monoxide beginso

to radiate, then the ratio of the total heat fluxes radiated

by 0 and CO is

FR(O)
3.72) R = = 5 x

F R (CO)

107 (2+8OX) (i-28CO) E(To)

(2+3 _CO ) T 3
o

I/BOX] F (2+3 _CO)/2BCO

I-A0X 3L1--_CO i

. (2+Box)/2 ox][ (l-2Bco)/ coil-Aox _!LI-Aco

Martian atmosphere

gradient of about

This ratio is plotted as a function of temperature at the

bottom of the radiation zone in Fig. 6. The curves are

labelled according to the assumed value of

Box = .i

2°K/km .

may be an important radiator in the Martian atmosphere under

_OX " In the

corresponds to a temperature

It is clear that atomic oxygen
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a wide range of temperature conditions. If the temperature

at the bottom of the radiation zone is less than 300°K

atomic oxygen can be the principal radiator. The transition

temperature at which O and CO radiate equal fluxes depends

on the values of _OX and 8CO in the radiation zone.

Even for temperatures T _ 500°K atomic oxygen radiates
o

roughly 25_oof the total flux radiated by CO and O. This

of course presumes roughly equal temperatures at unit opti-

cal depth in the CO _nd O. The error caused by this assump-

tion is approximately ET (O)/T (CO)] ½ in 3.72, where T (O)
o o o

is the temperature at unit optical depth in O and T (CO)o

the temperature at unit optical depth in CO.

Thermospheric Heatinq

The most important source of heating in the upper atmos-

phere is provided by absorption of solar ultraviolet radia-

tion. The exact mechanisms by which the ultraviolet photon

energy is transformed into kinetic energy of the atmospheric

particles is not well understood at present and this lack

of knowledge is generally incorporated into a heating effi-

ciency factor ¢ , which appears in the q of 3.2. The

simplest form which can be adopted for q(z,t;T) is

1 e-7/_
q(z) = _ F coN(z)3.73)
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where F is the solar flux at the top of the atmosphere,
oo

e the efficiency of heating, G the absorption cross sec-

tion, N(z) the atmospheric density, T the optical depth,

and _ the cosine of an effective solar zenith angle. The

factor 1/2 allows for planetary rotation. F , G , and
oo

presumably e are all functions of wavelength, and in the

form in which they appear in 3.73 they must be considered

as averaged quantities. The optical depth is defined by

dr = -N(z)odz The exponential factor in 3.73 thus repre-

sents the effect of absorption above the altitude under

consideration. The form 3.73 of q does have the advantage

of being integrable and if a sufficiently simple approxima-

tion for L were found a first integral of 3.1 could be

obtained. An improved form of q(z) is provided by assum-

ing that F , o , and c are averaged over short wave-
co

length intervals rather than over the entire spectrum so

that q (z) is

3.74) q(z)

-Ti/_

1 Z .c.o.N(z)e= _ (F=)l i i

i

The effect of different absorption cross sections, o , in
1

different wavelength intervals is to spread the heating erm

q(z) over a wider range of altitudes.

For a preliminary estimate of the heating rate in the
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Martian thermosphere we will adopt the functional form of

3.73 for q(z) If the ionizable constituent is atomic

oxygen and a diffusive distribution is assumed, then the

heating rate due to photoionization is

-z/H O

-(Z/Ho)-noaH O sec X e1

3.75) q(z) = _ F (k)a(k)Cnoe

where H 0 is the atomic oxygen scale height, X is the

solar zenith angle, and z is the altitude measured from

the height at which the oxygen density is n o By diffe-

rentiating the argument of the exponential factor on the

right-hand-side of 3.75 we find that the heat input occurs

at an altitude of

3.76) Zm = H 0 in n O o H O sec X

and since z is measured relative to n we see that the
m O

number density of atomic oxygen at the altitude of maximum

heating is

3.77) n
m

cos X

ott o

Taking a mean photoionization cross section of

estimated from the paper of Hinteregger et al.

-17 2
o = i0 cm

(1965) , a
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scale height H0 = 20 km , and a solar zenith angle of 67°,

corresponding to that at Mariner imersion, we obtain

i010 -33.78) n = 7.0 x cm
m

as an estimate of the oxygen number density in the region

of maximum heating.

The extreme ultraviolet _,_uv'.... ) flux incident at the top

of the atmosphere in the wavelength region below 91_ can be

obtained from various sources. However, the most that can

be said for our knowledge of this flux is that it is correct

to within approximately ±30%. Hinteregger et al. (1965)

estimate, for example, that their flux data are accurate to

a factor of 3 to 5 for short wavelengths and to +3_/o above

250_. The thermospheric temperature is quite sensitive to

the EUV flux and this quantity must be regarded as the

principal uncertainty in determining the temperature.

Table 2 gives the EUV flux data of Hinteregger et al.

(1965). The photoionization cross sections for the consti-

tuents present in the Martian atmosphere are also given.

The values for O, 02 and N 2 are from Hinteregger's paper,

and the values for CO and CO 2 are estimated from the data of

Schultz, Holland and Marmo (1963). At short wavelengths,

where photoionization cross sections for CO and CO 2 were no a

available, the CO cross sections have been set equal to those
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for O and the CO 2 to twice the 02 cross sections. The flux

values in the wavelength intervals given in Table 2 exclude

the energy flux in the strong spectral lines. The values for

the lines are given separately. The small interval 832-835_

in Table 2 gives the flux in the OII, III lines.

In addition to possible uncertainties in the data, the

EUV _ux_ itself is variable over a solar cycle a_ the cor-

rect flux values observed at one time might not be appropri-

ate for thermospheric computations at another. The Mariner

IV observations were made at a time of minimum solar acti-

vity and we should therefore expect relatively low values

of solar flux to give temperatures in agreement with obser-

vation.

Sources of heating other than the solar EUV below ll00_

could be considered. The wavelength region between iI00_

and 1800_ dissociates both 02 and CO 2. The magnitude of this

dissociative heating in the Schumann-Runge region has been

estimated for the Earth's atmosphere by Walker (1964) and

taken into explicit account by Harris and Priester (1964).

Harris and Priester find that this dissociative heating

(which occurs mostly at altitudes below 120 km) does not

greatly influence the exospheric temperature. In the

Martian atmosphere this heating will occur predominately

in the 70-90 km altitude region and is thus unlikely to
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significantly increase the exospheric temperature.

The heating which occurs when the dissociated products

recombine may also be considered. For example, from 2.3 we

see that this heat source for atomic oxygen recombination to

form 02 may be written

3.79) qRc(z) = k2AE nM(z)n2(z)

Since atomic oxygen is the dominant thermospheric constituent

we may estimate this source as

3 .S0) 10-44 3 3
qRc(z) _ 2 x nO(z) ergs/cm see

where AE = 5.1 e.v. (Wray, 1961) has been used for the

energy release on recombination, and the rate coefficient

k2 = 2.7 x 10-33 6cm /sec (Barth, 1964). At the altitude of

I0 II
maximum solar EUV heating, nO(z) _ at most, and this

heat source is thus of the order of i0 -II ergs/cm3sec, which

is negligible compared with the roughly 10 -8 erg/cm3sec con-

tributed by solar EUV. At lower altitudes, i.e., in the

70-90 km region, this heating could be significant, but

again this will not increase the exospheric temperature.

Equation 3.79 has, of course, assumed that all of the 5.1 e.v.

available on re ombination goes into heating the ambient gas
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and has completely neglected radiative loss in the atmospheric

bands of 02 . The above discussion thus overestimates the

magnitude of the recombination heating.

Since some of the model thermospheres studied in this

paper have temperatures at ionospheric altitudes which are

about the same as or colder than temperatures in the lower

atmosphere, the possibility of radiative heating of the

upper atmosphere by the planetary spectrum must be considered.

Such heating cannot be significant for the models studied

in this paper however. In all the models studied unit opti-

cal depth in atomic oxygen and carbon monoxide occurs above

i00 km (usually above ii0 km), dissociation of CO 2 occurs

near 80 km, and the scale height in this region is about

5-10 km. There are thus several optical thicknesses of these

radiating constituents below ionospheric altitudes and any

radiative exchange with the ground must occur in the same

altitude interval where CO 2 dissociation occurs.

Only the solar EUV heating is explicitly used in these

model studies. This, of course, involves the basic assumption

that the temperature of the thermosphere reflects the heating

and cooling processes which occur in the thermosphere and

that this temperature is not significantly altered by hea_in_

at much lower altitudes. The heat input near mesopause

altitudes is implicit in the boundary temperature assumed at
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the mesopause, and it has been found that the exospheric

temperature is insensitive to variation in conditions at

the lower boundary. The assumption of heating by solar EUV

alone leads to successful description of the time-averaged

temperature structure in the Earth's thermosphere (Hunt and

van Zandt, 1961; Lazarev, 1964).

Heatinq Function Use_____di__nnPresent Calculation

The solar EUV heat source appearing in the thermal con-

duction equation has been computed from

3.81) Q(z) -

5
o0

5 1 )r  (z)dz
e _j nj (z)_ F (X)_. (X)e- _ k_l i ' z2 i 3 i

j=l i

where the sums _ and
J

E are taken over the five consti-
k

tuents CO 2, CO, 02 , N 2 and O, and the sum 7._ is the sum over
1

the wavelength intervals given in Table 2.

Integration of the Thermal Conduction Equation

Having found functional forms for the thermospheric

heating and cooling mechanisms we turn to a derivation of

the temperature profile. This is accomplished via numeri-

cal integration of the thermal conduction equation which

we write in the time-independent form
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3.82) _z K(z,T)_z + q(z) - L(z,T) = 0

q(z) is the rate of heat generation (ergs/cm3sec) given

by 3.74 and L(z,T) = R + R + R is the sum of the heat
s r v

losses. R ,
s R , and R are given by equations 3.29,r v

3.24, and 3.33. The temperature dependence of the thermal

conductivity may be written (Nicolet, 1960)

3.83) K(z,T) = K (z)T ½
o

The dependence of K on altitude is a result of the

variation of composition with height. The conductivity

K is computed by taking an average, at each altitude, of
o

the individual conductivities of the constituents CO 2, CO,

02 and 0 weighted by the fraction of the constituent present

at that altitude. The conductivities of CO 2, CO, and 02

are taken from the tables on pages 574 and 577 of Hirschfel-

der, Curtiss, and Bird (1954) and that of 0 is from Nicolet

(1960). The values of the conductivities used are given

in Table 3.

With the change of variable U = T 3/2 the thermal

conduction equation 3.82 can be reduced to the following

two first order differential equations:
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dP 3
3 84) K (z)-r- + K' (z)P = - - Q(z,U)
" o az o 2

dU
3.85) -- = P ,

dz

where K' (z) = dK (z)/dz and Q(z,U) = q(z) - L(z,U) is
o o

the net rate of heat generation. These have been integrated

simultaneously on an IBM 360 (Mod. 75) computer at the

Goddard Institute for Space Studies for a range of atmos-

pheric compositions. The method used was a standard Runge-

Kutte procedure (Kuo, 1965, Chapter 7).

The equations 3.84 and 3.85 are integrated upward

from an arbitrarily chosen altitude which has been varied

between 70 and g 0 km for these model studies. One boundary

condition is taken as dT/dz = 0 and this is held fixed,

which means that the altitude at which integration is begun

is assumed to be the mesopause for the model under considera-

tion. The temperature at the boundary is then varied until

an isothermal profile is obtained at high altitudes. The

nature of the solutions obtained can be studied by writin S

3.82 in the form

d2T 3/2 3
3.86) = - _Eq(z) - L(z,T)_

dz 2 2K o



70

The altitude dependence of the thermal conductivity has been

neglected to simplify the discussion.

In a region where radiative cooling is greater than the

heat input, the right-hand-side of 3.86 is positive and the

temperature gradient dT3/2/dz will increase with altitude.

In regions where q > L the temperature profile will bend

over as the gradient becomes smaller. Since the heating

term q(z) is only weakly temperature-dependent, whereas

L(z,T) increases with T , we can readily ascertain the

type of solutions to which 3.86 gives rise. We assume that

the Martian exosphere is isothermal as is the Earth's and

that the solution we seek is characterized by a zero tempera-

ture gradient at high altitude.

Suppose we choose too high a temperature T 1 , say, at

the mesopause (Fig. 7). The values of L(z,T) will then

be too large and the run of temperatures will be too high

with a positive gradient at high altitudes. This is

illustrated by curve A in Fig. 7.

choose too low a temperature T 3

On the other hand, if we

the cooling will be insuf-

ficient and the temperature run will be driven negative, as

shown by curve B. The correct boundary temperature T 2 will

give a profile of the assumed form, such as C.

The actual conditions of density and temperature at

the mesopause are largely determined by the processes of
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T

A

C

T

T3 °

I
Zrn

Z

Fig. 7. Mathematical solutions of the thermal conduc-

EdT_tion equation for boundary conditions

Z=Z
m

T(z m) = T l, T 2, T 3 •

= 0 and
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heat deposition and transport occurring between the ground

and mesopause altitude. Therefore, our calculation concerns

only the altitudes above the mesopause and does not deter-

mine the mesopause altitude or temperature. The altitude

and temperature at the mesopause are boundary conditions

in our formulation of the upper atmosphere problem. We have

found that our main result, the temperature in the Martian

exosphere, is insensitive to variations in these boundary

conditions over the altitude range from 70 to 90 km that

has been studied. Uncertainties in the values of the boun-

dary conditions are therefore not a difficulty. In practice,

a ten kilometer increase in mesopause altitude resulted in

roughly a 5°K increase in exosphere temperature for the

models studied here. The models can therefore be matched

to a higher run of temperatures in the assumed mesopause

region by increasing the altitude at which integration is

begun, and the exospheric temperature will be little changed

by such a procedure.

To obtain rigorously correct solutions the thermal con-

duction equation 3.82 would have to be integrated simulta-

neously with the equations of continuity for each molecular

species present (equations A.12 of Appendix A)° Since our

primary interest is in finding the temperatures and not the

densities, there are two reasons why this is not essential.
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First, the exospheric temperature has been found to vary

by only about 50°K (roughly 20_o) for the most extreme den-

sity models studied (with a fixed solar flux), i.e., for an

atmosphere in which the CO 2 is highly dissociated to low

altitudes and one in which it is only slightly dissociated

beginning at 70 km. Physically, this results from the fact

that changing the extent of dissociation and the altitude

at which it occurs alters the location of the heat source

and radiative sinks in the atmosphere, but changes their

relative locations and their magnitudes only slightly.

Increasing the extent of dissociation raises the mesopause

altitude and the altitudes at which heating and cooling are

effective. Second, it has been found that the numerical

solutions of the conduction equation can be approximated

quite well by a functional form

-z2/A)
+ (T - TM) (i - e3.87) T(z) = T M

where

tempera ture,

constant A

T M is the mesopause temperature,
T the exospheric

CO

z the altitude above the mesopause, and the

may be chosen to match the numerical solution

and 3.87 at any selected point.

The densities used in evaluating the heating and loss

terms in 3.82 are calculated from the equation
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3.88)

(X)

T -'_z dz/Ho
n (z) = n e

o T(z)

where H.= kT(z)/mg(z) is the scale height and T(z) is

given by 3.87. Once a successful solution such as C in

Fig. 6 is obtained, new parameters T M , T , and A may be

chosen to fit this solution and integration of the thermal

conduction equation carried through again. This procedure

could be repeated several times, but in practice a close

fit is obtained between 3.87 and the solution of 3.82 on

the third integration. Actually, the exospheric temperature

changes by only a few degrees from the value obtained on

initial integration of the conduction equation even for a

poor first estimate of TM , T , and A , which again sub-

stantiates the finding that this temperature is relatively

insensitive to the density distributions.

The results of integrating the conduction equation for

EUV heating fluxes varying from .15 to .55 erg/cm2sec are

presented in Fig. 2. The flux values at which carbon

monoxide cooling becomes dominant is indicated by the

vertical bar. Since the total flux radiated by carbon monox-

ide is proportional to T 7/2 the portion of the curve

corresponding to higher flux values is flatter than the

lower part where atomic oxygen cooling predominates.
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Figure 3 is a plot of the temperature of the Martian exo-

sphere during the solar cycle using the 1954-1965 cycle as

typical. The variation of the 10.7 cm solar flux during

this period ranged from roughly 70 to 250 (10 -22 ) watts/

2
m cps (Harris and Priester, 1962), corresponding to a

probable variation in the mean solar EUV at Mars of .26 to

.92. The upper curve of Fig. 3 shows the variation of the

mean temperature of the Earth's thermosphere during the

solar cycle (Harris and Priester, 1962). Since the carbon

monoxide content of the Earth's upper atmosphere is negli-

gible, there is no effective nnermostat keeping the tempera -

ture down as the heat input increases. The variation with

solar cycle of the Earth's exospheric temperature is thus

relatively much greater than the variation for Mars.

From Fig. 3 we see that the temperature of the Martian

exosphere will always be below the ll00°K that would be

necessary for the thermal escape of atomic oxygen. Heavier

inert gases such as neon and argon would also be re_a_ned.

The temperature does, however, become great enough for the

lighter gases such as hydrogen and helium to escape.

Hydrogen cannot be retained by Mars at exospheric tempera-

tures above 70°K and the corresponding value for helium

escape is 275°K.
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THE IONOSPHERE

The physical processes responsible for the formation of

regions of ionization in a planetary atmosphere are well

understood. An extensive review of ionospheric theory has

been given by Yonezawa (1965). In the following, the

mechanisms responsible for layer formation will be discussed,

and the type of ionization layer in best accord with the

Mariner observation will be considered.

The existence of an ionized layer is determined by the

competition between electron production and loss. Identifi-

cation of the chemical reaction responsible for electron loss

is of primary importance in determining whether diffusive

loss must be considered. In the development of the theory,

reference will often be made to the situation in the Earth's

ionosphere. It is felt that this will best serve to clarify

the arguments and prepare for their application to Mars.

The presence of charged particles in the upper atmos-
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phere arises as a consequence of the ionization by the solar

extreme ultraviolet radiation of the neutral constituents

present there. Since the energy required for ionization of

atomic or molecular constituents is generally greater than

that required for molecular dissociation, the wavelengths of

interest for the ionosphere are shorter than those relevant

to CO2 photoiysis. The upper limit to the wavelength of

radiation capable of ionizing atomic oxygen, for example, is

911_, and the maximum ionization cross section occurs between

500_ and 600_. Ionization cross sections vary differently

with wavelength for different atmospheric constituents,

giving rise to the appearance of local electron production

maxima at different altitudes and, hence, to the existence of

ionospheric layers.

If F(k,z)

altitude z , with n. (z)
l

ionizable constituent, and 0. (k)
l

ionization of n at wavelength
l

tron production at height

denotes the solar flux of wavelength k at

th
the number density of the i

the cross section for

k , then the rate of elec-

z may be written

4.1) (Z) >, (k Z)O. (k)n (z)Qe = _ Yi F ' I i

k,i

where Yi is the number of electron-ion pairs formed per

absorbed photon -- photoionization yield -- and the sununation
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over k is understood to be over the values of the wave-

length-dependent quantities in discrete wavelength intervals.

If F (k)
co

is the solar flux at the top of the atmosphere,

the attenuation of the radiation as it penetrates the atmos-

phere may be expressed by

4.2)

co

-7.0j. (k).Izn j (z)dz/_
3

F(X,z) = F (k)e

where _ is the cosine of the solar zenith angle. If we

assume that the region of ionization is isothermal and that

there is only one ionizable constituent, 4.1 and 4.2 may be

combined as

4.3) Qe(Z) = _yFco(k)o(k)noe

k

z -z/H
n o (k)H sec X e

H o

where H is the neutral atmospheric scale height, and X

is the solar zenith angle. The altitude z is measured

above some reference level in the atmosphere at which

n = n
o

The form of the electron density profile depends on the

assumptions made regarding the loss mechanism. The simplest

assumption would be a loss via radiative recombination

+

4.4) O + e _ O + h_ k I



The rate constant is k 4 x l0 -12 3= cm /sec. at 250°K
1

(Biondi, 1964). The loss rate is then
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4.5) L = klnO+n e = kl n2e

and if photochemical equilibrium is assumed, the density pro-

file is

4.6) n (z) = ---

e \/ k I

The ionospheric layer described by 4.6 is known as a

Chapman layer. It exhibits an absolute maximum in electron

density at the same altitude as the maximum in the production

function Q The observed maximum electron density in the
e

Earth's ionosphere is less than the maximum density value in

a Chapman layer, and it occurs at a higher altitude. Hence,

4.6 does not provide a good description of the Earth's iono-

sphere. The inadequacy in this model is in the assumption

of radiative recombination as the sole loss mechanism. The

presence of molecular constituents provides alternauive and

more rapid mechanisms by which electrons may be lost. For

example, a molecule XY may first acquire a charge via a

charge exchange or ion-atom interchange reaction



8O

+ +
4.7) 0 + XY - 0 + XY

or

+ +
4.8) 0 + XY _ X + YO

this being followed by dissociative recombination

+
4.9) XY + e _ X + Y

or

+
4.10) YO + e _ Y + 0

In the Earth's ionosphere the dominant molecular species are

N2 and 02, and the following set of reactions might be pos-

tulated for electron removal:

4.11)
+ +

0 + N2 _ N + NO _i

+
4.12) NO + e - N + 0 1

and
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4.13) O+ + 02 _ O + O_ B2

+
4.14) 02 + e _ 20 _2

The _'s and B's are the rate coefficients for the reac-

tions. An ion-atom interchange reaction has been written for

4.11 since this type of reaction has been generally observed

to proceed more rapidly than charge exchange. The consequen-

ces of reactions 4.11-4.14 for the shape of the electron den-

sity profile have been discussed by Yonezawa (1965); the main

points of his review are reiterated below.

The form of the loss function depends upon whether the

loss is limited by the ion-atom interchange reactions 4.11

and 4.13 or by the dissociative recombination reactions 4.12

and 4.14. The former would be expected to limit the loss at

higher altitudes due to the decreasing availability of the

molecular constituents, whereas the latter will limit the

loss at lower altitudes due to the smaller electron density.

These removal mechanisms are said to be the attachment type

(high altitudes) and the recombination type (low altitudes),

and the rates may be written, respectively

4.15) L = (BInN2 + B2no2)n +a O
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4.16) L = (_i n + _2n +)n
r NO+ 02 e

or

4.17) L =a _effne

2
4.18) L =

r effne '

where

4.19)

8eff = 81nN 2 + 8 n2 02

is the effective attachment coefficient, and

4.20)
_eff =

+ c__n +
c_lnNo+ 2 0 2

n + n
+ +

NO 0 2

is the effective recombination coefficient. The condition

of charge neutrality, n = n at high altitudes and
. e +

0

n = n + n at low altitudes, has been used in 4.17 and
e + +

NO O 2

4.18. By equating the rates of production and loss of the

molecular ions in 4.11-4.14, we find readily that



4.21)

81

n +
NO _inN2

n + 82

02 _22 no2

and the effective recombination coefficient can be written

83

+

81nN 2 82n02

4.22) _eff = 81 82 '
m n + -- n

_1 N2 _2 02

which is approximately independent of altitude. The electron

density profiles in regions governed by attachment-type and

recombination-type loss are thus described by

and

4.24) n = recombination-type loss
e

The production function Qe may be written

4.25)

- (Z-Z O)/H
1 -[(Z-Zo)/H]- (see X)e

Q (z) = Q e
e o

where, it will be recalled,

electron production and H

oxygen. At high altitudes

z
o

is the altitude of maxin_um

is the scale height of atomic

z >> z , Q decreases as
o e



- (Z-Z)/H
o

e
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; however, 8eff , given by 4.19 falls off with a

scale height corresponding to N2. HN2 is less than H , and

therefore the electron profile of 4.23 is a monotonically

increasing function at high altitudes, and the ionization

layers having a loss mechanism described by 4.11-4.14 can

exhibit no absolute maximum. If the profiles described by

4.23 and 4.24 are combined at the altitude where the attach-

ment- and recombination-type loss rates are equal, i.e., at

an altitude where (equating the right hand sides of 4.17 and

4.18)

4.26)
81 82

_i n + -- n = nN2 _2 02 e

a local maximum may still be exhibited. Since _eff is

approximately independent of height, the condition for a

local maximum in the electron density profile is that there

be a local maximum in the production function Qe occurring

at an altitude where the recombination-type loss is dominant.

The occurrence of such a local maximum may be identified

as the F 1 layer, but since no absolute maximum exists, a

theory based solely on recombination- and attachment-type

loss mechanisms (Bradbury Theory) cannot provide an adequate

explanation of the entire F region of the Earth's ionosphere.

When electron-ion diffusion is taken into account, an absolute
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maximum is formed in layers governed by attachment-type loss.

Since Bef f is a decreasing function of altitude, the maxi-

mum in the ionization profile does not correspond to the

maximum in the production function

higher altitude.

Q , but occurs at a
e

In the case of the Martian ionosphere, Fjeldbo et al.

(1966a) _,,_v_ _A__*I,, suggested *h=*__ the probable loss

mechanism for electrons is

+ +

4.27) O + CO 2 - 02 + CO _3

w±L** a rate coefficient
83 = 1 x ±u cm i_. _L ouu

(Norton e___ta__l., 1966), followed by

+

4.28) 02 + e _ 20 _2

with a rate coefficient _2 _ 10-7 3cm /sec.

1964).

On the basis of these reactions alone,

and recombination-type loss rates would be

at 300°K (Biondi,

the attachment-

4.29) L a 8 n n =
= 3 CO 20 + 8effne _eff = 83nco2
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2
4.30) L nr = _2 n + e _2ne

O 2

These loss rates will be equal at an altitude where

83 -3
4.31) n = -- n _ i0 n

e _2 C02 C02

The ionization maximum in the Martian atmosphere has

been observed by Mariner IV at about 125 km. On the basis

of a model density distribution in which CO 2 is only _i0%

dissociated at 70 km., the CO 2 density at this altitude is

about 109/cm 3, the precise value depending on the tempera-

ture distribution. Since the observed electron density at

the ionization maximum is _105/cm 3, condition 4.31 will only

be satisfied at an altitude well above this maximum. The

high CO 2 densities in the Martian atmosphere above the meso-

pause thus imply that the ionosphere is governed by a recom-

bination-type loss mechanism, i.e., the ionization profile

can be described by a Chapman function, and it is not neces-

sary to consider diffusive loss in the Martian ionosphere

except at altitudes above the ionization maximum. A further

implication of the slight CO 2 dissociation is that the domi-

+ +

nant ion in the ionosphere must be 02 rather than 0 , and

the ionization scale height observed by Mariner IV must be
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interpreted as implying an exospheric plasma temperature of

+
200°K rather than 100°K, as would be the case if 0 were the

dominant ion.

We will assume that the 200°K temperature is character-

istic only of the plasma and not of the neutral atmosphere.

An elevated daytime plasma temperature has been observed in

the F region of the Earth's ionosphere (Brace et al., 1963;

Spencer e__!ta!., 1965; Sagalyn et al., 1965). (A theoretical

treatment of the high electron temperatures in the ionosphere

has been carried out by Dalgarno et al. (1963).) The temper-

ature difference results from the high initial energy of the

photoelectrons ejected by the solar ultraviolet, which sub-

sequent elastic and inelastic collisions cannot degrade to a

value characteristic of the neutral atmosphere. It is likely

that such conditions are present in the Martian atmosphere

as well.

Mariner IV observed a constant 29 km. plasma scale

height extending from just above the ionization maximum to

+

an altitude of about 200 km. For 02 as the dominant ion in

this region (based on an F 1 interpretation), this scale

height is characteristic of atomic oxygen at the same temper-

ature as the plasma. If we allow a difference between plasma

and neutral temperatures, however, the computed atomic oxygen

scale height is
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T
E

4.32) H = -- H ,
0 T p

P

where T = 200°K and H = 29 km. are the plasma tempera-
P P

ture and scale height, and TE is the exospheric temperature.

The observed altitude of the ionization maximum in the

Martian atmosphere and the constant plasma scale height above

this level provide an additional constraint on the computed

models. Increasing the heat input increases the computed

altitude at which the heating is a maximum. We expect the

observed altitude of the ionization maximum to correspond to

low effective heating rates. An altitude Of 125 km. corres-

ponds to a heat flux of about .ii erg/cm2sec which is below

the value estimated at solar cycle minimum, but within a

-+30% uncertainty in the data.
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APPENDIX A: DIFFUSION THEORY

The diffusion of neutral constituents in a planetary

atmosphere has been discussed by Nicolet and Mange (1954)

and by Mange (1957). Specifically, they considered the dis-

tribution of .... _u _s_ .... +_ in =-chemlc_l±y --_: ..... _ .... i

atmosphere with linearly varying scale height. Their con-

siderations can be applied to some extent in the present

work; in particular, the derivation of the linear terms in

the diffusion equation follows Mange (1957).

The mutual diffusion of constituents in a two-component

atmosphere is given by Chapman and Cowling (1952) as

2 ;_T

--" -- n [d + _T_
A.I) C1 - C2 = nln 2 DI2 12 T-

C 1

n 1

DI2

and C2 are the thermal velocities of the constituents,

and n 2 their number densities, n the total density,

the mutual diffusion coefficient, and K T is the
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thermal diffusion coefficient. d12 is given by

A.2) dl2 = ! ($Pl÷ Plg)
P

Pl and Pl are the partial pressure and mass density of

the first gas, and 0 is the total mass density in the case

where gravity is the only force acting on the molecules. We

write this as

2

(nl+n2) DI2{ 1 dnl__ + nlk dT_z_
A.3) W 1 - W 2 = nln2 (nl+n2)k T _kT dz

+ nlmlg _T dT}
(nl+n2)kT + T _z

nl+n2 D {nl_l dnl 1 + [i + nl+n2n 2 12 dz + Hq n I

1 dT

If the thermal diffusion factor is defined by

A.4) _ =

2

(nl+n 2 )

nln 2 _tT

the mutual diffusion is given by

n 2

nl+n2 I dnl i i 1 + _i i dT
A.5) WI - W2 = n 2 IDI2 n I dz + H_ + nl+n 2 T- _z}

In the case of a minor component n I diffusing in a stable



91

main atmosphere, we have nI + n2 _ n2 and W2 = 0 .

diffusion velocity for a minor constituent is thus

The

r 1 dnl 1 1 dT

A.6) Wl =-DI2Lnl dz + Hi + (i + =)T _]

If we assume a linear variation in scale height,

1 dT 1 dH 8
A.7)

T dz H dz H

and

= D { I- dnlnl ml

the logarithmic derivatives of T and H being equal, since

m2 _m

It is on the basis of A.8 that the earlier definition of

diffusion time is based.

d
-- In n _ 0 , then
dz

d
If we take -- in T _ 0 and

dz

D
A.9) W_ -

H

The latter condition holds near the maximum of a photochemi-

cal distribution, which is where evaluation of the diffusion

time TD is of greatest interest.

It is convenient to express A.9 in terms of a height
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variable _ introduced by Nicolet (1954) and defined by

A.10) fI = eB C
H
0

The diffusive velocity is then

A.II) W1 DI2F 1 dnl ml
= H_ Ln_ d C +--+(im + _)B1

We note that in diffusive equilibrium W 1 = 0 , and the

height variation of density is given by

A. lla)
-[_--!l+ (i + _)_- C

n I = nlo e

The continuity equations for the chemical constituents

are, neglecting production and loss terms,

_n.

A.12) .... (n.W.)
_t _z i i

It is convenient to express these equations in terms of new

dependent and independent variables. The new dependent

variable u , is defined as the constituent concentration

divided by its diffusion equilibrium altitude variation

n

A.13)

+ (i + ! C
u = n e
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The variation of u thus is a measure of the extent to which

the density profile departs from diffusive equilibrium; in

diffusive equilibrium u = constant = n The new indepen-o

dent variable y is defined as

A.14)

18-i) _

y = e

It is virtually certain that in any physical situation

of interest 8 < 2 . For example, in the Martian atmosphere

H _ (5 x 10-2)T km. , and a change in scale height AH/Az

would require a temperature change of AT/Az _ 20 AH/Az

, - | ...... _" _L
For 8 = 2 , we would need a uemperauuz_ gz=u±_,Lu of -_-'_(_k)t2 LA _.

40°K/km., and atmospheric gradients of this magnitude are

not found.

therefore,

As the height variable

y varies from 1 to 0.

varies from 0 to _,

The variable transfor-

mations A.10 and A.14 are not in appropriate form for the

case 8 = 0 , since the relation between z and

then ambiguous. For the isothermal case,* we take

-z/2H
and hence y = e . In terms of y we have

is

= z/H ,

*Strictly speaking 8 = 0 does not imply T = constant ,

but rather H = kT/mg = constant . This distinction need

not however be emphasized for this discussion.



94

A.15)
-2[¥ + (2 + 8)/(2 - 8)]

u = n y

where

A.16)
ml/m + 8_

- 1
Y = 1 - 8/2

The diffusion coefficient D is proportional to

HI/2

n

where n is the total number density. We thus have

A.17)
D/H

D /H
o o

n H 1/2

n _

and with

A. 18)

n
o

n

4 (1+8)

8-2
- y

and

A.19)

H 1/2
- 29/(8-2)

= y

we have

A.20)
D

w

H

D
o

H
o

2[ (_+2)/(8-2) ]
Y



Using A.20 we find that, in terms of the variables

y , the diffusive velocity and flux may be written

u and
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D

8 - 2 o 2(8+2)/(8-2) Z ___u
A. 21) Wl = 4 H y

u Byo

D

A.22) nlWl _ 8 - 2 H o y2y+1%u

o

In terms of these variables, the continuity equation is thus

1 _u _2u
A.23) = -- +

_2 _t %y2

2y+l _u

y By

WI J.I_.L v

1/2
D

8-2 o

4 H
o

-a we ,low _xpre_s one time in units

2
of _ so that

2
t - t , a dimensionless variable, and add

the sources and sinks for a given constituent, the continuity

equation may be written

_2u 2y+1%u 5u

A.24) ---_ + = -Q(u y)
_y y By _t '

-2[y+ (2+_)/(2-_)
Y

2
6

where Q(u,y) is the difference between production and loss

terms. With a further change of dependent variable,

= yYu , A.24 becomes

1 _ %C_ 2 _3_ -L _+2 (2+_)/(2-8) _2 n- %q = -Q(_,y) Y
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Solutions of A.24 have been discussed by Mange (1957),

for the cases in which Q is either zero or independent of

u (or _ ). When this equation is applied to the diffusion

of constituents arising in the photolysis of CO 2, however,

the production and loss terms depend on the various number

densities and are non-linear as well. The result for the

present problem is thus a set of four coupled, non-linear,

partial differential equations, and recourse must be made to

numerical solution. It is of interest, however, to pursue

the formal solution of the continuity equation in the form

of A.25, treating Q as independent of _ Mange (1957)

has taken over directly the solutions of A.25 obtained by

Sutton (1943) in regard to another physical problem. (This

approach is discussed later.) A method employing Hankel

transforms will be used here to solve A.25. It is felt that

this method is simpler and more direct than Sutton's some-

what involved boundary-value techniques.

The finite Hankel transform of a function f(x) is

defined by

_,if J (px) dxA.26) f(p) = (x) x
n

o

where J is a Bessel function of the first kind, of order
n

n ; the method of selecting p is discussed below. The



97

inversion formula can be represented generally by

A.27) f(x) = _ a J (px)
/. p n

P

The form of the coefficients a depends on the method of
P

selecting p . If p is chosen as a positive root of the

equation J 'tP) = U,
n then an application of the theory of

Fourier-Bessel series leads to

2 _if(x) x J (px) dx 2f(p)A.28) a = =

p j2 n j2
n+l (p) o n+l (p)

whereas, if p is taken to be a positive root of the equation

B

A.29) p Jn(p) + h J (p) = 0n

where h is a constant, then the appropriate form of a is
P

A.30) a = 2p2- (P)_
2 2

P h2 + p - n

Generally, the use of an integral transform in solving

a partial differential equation temporarily suppresses one

of the independent variables, leaving a reduced equation in

one less variable. In the case of A.25 above, a finite

Hankel transform will be applied to suppress the variable y



(the finite transform being employed because

0 to I).
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y ranges from

The physically obvious boundary conditions to use in

solving the continuity equation, in any of its forms A.12,

A.24, or A.26 are that the diffusive flux be zero at the

ground and at the top of the atmosphere, i.e., at y = 1

and at y = 0 In terms of the variable u(y) , A.22

shows that this requirement means

2y+l _u = 0
A.31) Y By

at y = 1,0 , or, in terms of the variable _(y) ,

A.32) Y By 7_ = 0

at y : 1,0 Mathematically, it will prove possible to

obtain solutions by requiring only that the diffusive flux

vanish at the ground

A.33) yn = 0
5y

at y = 1 , and requiring that y _/_y vanish at y = 0 ,

the top of the atmosphere. The source term in A.25 will be

written Q(y,t) , the explicit dependence on _ being



99

deleted.

solution, the

step.

It is understood that, in an actual numerical

in Q are evaluated at a previous time

stated as follows:

The problem of determining the density profiles is now

We must solve the equation A.25

2
1 B r B_-! y BD
_|Y _| 2 _ - _ = -Q(Y't)Y -..i ..J

Y

subject to the initial condition (the initial density pro-

file)

A.34) n(y,0) = n (y)
o

and to the boundary conditions

_n

A.35) _y yQ 0 , y 1

and

_n
A.36) y _ = o . y = o

uy

We have for simplicity absorbed the factor

into Q .

We multiply A.25 by y J (py) , where
Y

1 -[y+2 (2+8) (2-6) ]

p is chosen,
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for reasons which will shortly be apparent, to be a root of

!

A.37) p Jy(p) - y Jy(p) = 0

and then we integrate from 0 to i:

_i 6 _--_; Jy(py)dy - y J (py)dyA.38) Jo_ly _y_ 09 Y

= Y _y Jy(PY)i - p _y Jy(py)dy - y Y J (py)dy
_O O O Y

!

By Iy=l o

2

+ p f2 _T-(Y Jy(PY)) J (py) dy
o PY Y

Integration by parts has been used in these steps, and A.37

has been used in the second step. Combining terms and

carrying out the differentiation under the integral sign, we

have, for the first two terms of A.25

A.39)

Y y=l

2

+ pj_ py (py)+ j (py) Y j (py)Idy
Y PY Y _J

0

Due to the choice A.37 of p , and to the boundary condition
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A.35, the first term is

A.40)
Jy (P) I _n Yn 3by

y=l

= 0

Since J (py)
Y

satisfies Bessel's equation

A.41)
j (py) + __i J (py) + _i
? PY Y

2

2 2_IJy'
(PY)

P Y

0

the integral is just

2_l_y 2-A.42) -p Jy(py)dy = -p n(p,t)
O

The finite Hankel transform of A.25 is thus

A.43) d_

where

A.44)

1

Q(p,t) = _ Q(y,t)y J (py)dyY
O

Since p is a root of A.37, the appropriate inversion

formula is given by A.30 with h = n , and hence

A.45)

J (py)

< ,
n(y,t) = _(p,t) j2

(P)
p Y
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The solution of A.43 is

A.46)
2 t . 2 '

_(p,t) = _o(p) e -p t + _ dt e- p (t-t)

o

Q(p,t )

where

A.47)

1

,, I I I I_o(p) = dy y J (py)n (y)
y o

o

and

A.48)

]
I _ I ! I I I

Q(p,t ) = j' dy y Jy(py )Q(y ,t )
o

Hence,

A.49)

2 1
l I I I

_(p,t) = e -p t_ dy y J (py)_ (y)
y o

o

t , 2 ' 1 ,

+ .I'dt e- p (t-t)j' dy y
o o

I I I

J (py)Q(y ,t )
Y

Using the inversion formula A.45 the solution becomes

A. 50)

1
I I I

n(y,t) = ,I GI(Y'Y ;t)y flo(y )dy
o

t 1

']_ G 2 ......+ .[ dt (y,y ;t,t )y Q(y ,t )dy
o o
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where

A.51)

!

' _, 2t J (PY)J7 (py)Gl(y,y ;t) = 2 e -p Y

j2 (p)
p>O y

and

A.52)

!

, , 2 ' Jy (py)Jy (py)

G2(y,y ;t,t ) = 2>, e -p (t-t)
j2(p)

p>0 7

From the definition A.13 of u and the relation _ = yYu ,

we have the relation between the density variables n and [,

A.53) n(y,t) = yy+2(2+_)/(2-8) n(y,t)

The solution A.50 in terms of n becomes

y+2 _ , 8-2 Y , '

A.54) n(y,t) = y Gl(y,y ;t)n (y')dyo
o

2+8_ I2---gJt , l
+ y dt S2(y,y ;t,t )y Q(y ,t )dy

o o

We can see from A.54 that the density profile approaches

a diffusive distribution at high altitudes as would be

expected. As y- 0 the Bessel function in G 1 or G 2 ,

having a y-dependent argument, behaves as yY , and, thus,

2 (y+l) -z/H' ' m
n(y) behaves as y = e , where H = --T H is

m



the scale height for a constituent of mass

taken _ = 0 for simplicity.
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m , and we have

A Comment on Manqe's Solution

As previously noted, Mange (1957) has presented a solu-

tion of A.25. Reference to his equation 5.1 or 6.9 shows

that it is not of the same form as A.54. Instead of inte-

grals over the functions G 1 and G 2 of A.54, which are

themselves a sum of products of Bessel functions of the

first kind, Mange's solution contains an integral over a

Bessel function of imaginary argument of the first kind,

I (y) This difference is due to the fact that Mange uses
Y

the solution of the sourceless form of A.25 obtained by

Sutton (1943).

Sutton's equation, though identical in form with A.25,

contains an independent variable with a range from 0 to

rather than from 0 to I. This difference in the range of

the independent variable necessitates the application of

boundary conditions at different points, which in turn

results in different solutions. Mange's solution, then, is

appropriate only for an atmosphere which extends infinitely

downward so that as z _ _ , y _ _ . Such a solution would

be useful if there were no transport to ground level of any

of the constituents being considered.
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The solution of A.25 for the infinite atmosphere can be

obtained by a procedure analogous to that used in deriving

A.50 and A.54.

may be employed.

dent variable

In this case the (infinite) Hankel transform

The Hankel transform pair for the depen-

of A.25 is

A.55) n(y,t) = _ _(_,t)_ Jy(y_)d_
o

and

A. 56) _(_,t) = i_ n(y,t)y J (_y) dyY
o

Multiplying A.25 by y Jy(_y) and integrating from 0 to _,

we obtain for the transform of the first two terms

A.57)

I - Y=_

Y JY(_Y)_Y - _ J¥ y=0

2
It ! -,

gy
o

The first term of A.57 may be written

A.58)
y ___

y=O

This vanishes at y = 0 , but the situation at y = _ is
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somewhat more complicated.

According to Mange, useful solutions can be obtained

for the condition that the diffusive flux vanish as y _ _ ;

however, in this circumstance only the term in square brac-

kets above will vanish.

1/2

_Y Jy+l(_Y ) _ (_y)

As y _ _ , we have

In order for the second term to

c
vanish, we require _(y) _ y with c < -1/2 as y _

In diffusive equilibrium _(y) goes as yY , and we may say

that our constituent approaches diffusive equilibrium as

y - = only if the ¥ of A.16 , i.e., not the absolute

value, is less than -1/2. For an isothermal atmosphere this

could mean ml/m < 1/2 , and we could obtain solutions

satisfying the requirement of diffusive equilibrium only for

constituents whose mass is less than half the mean atmospheric

For _ > 0 the mass requirement is even more strin-mass.

gent.

Physically, however, it would seem that there is no need

to impose such restrictive mass requirements, i.e., we need

not require diffusive equilibrium. In most instances we will

be interested in the density profiles of constituents which

are removed from low altitudes by chemical processes, and in

such cases a low altitude diffusive equilibrium requirement

would be physically incorrect. Even in the absence of a

removal mechanism, downward diffusion will become ever more
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difficult as the mean atmospheric density increases,

_D _ H2/D _ _ (D - 0) , and diffusive equilibrium is unlikely.

In the absence of a removal mechanism, of course, a consti-

tuent will be transported to the ground and the density

distribution for such a constituent could not be obtained by

these methods.

In view of these arguments, we simply suppose that the

c
first term of A.57 vanishes, i.e., that _ _ y as y _

(c < -1/2) , and that this imposes no restriction on y

The consistency of this argument may be checked once a solu-

tion is obtained.

The Hankel transform of A.25 has the same form as A.43

d_ + g2_ = Q(g,t) .59)

and as before

A 60) _(_ t) no(_) e__2t t ,• , = + Q(_,t ) e -_

o

2 (t-t') I

dt

With the aid of A.55 and A.56, A.60 becomes

A.61) a(y, t) = _o (y)_i (y' y ; t) dy
o

t Q0

+ dt' dy y (y,y ;t,t )Q(y ,t )

o o
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where (Watson, 1944, Chapter 13)

A.62)

CO

_i (y' y ;t) = e -t_

o

2
!

_jy(y_)Jy(y _)d_

1 - ( +y 2)/4t

= 2--[ e Iy

and

A.63)
, _ - (t-t')

_2(y,y ;t,t ) = e
o

I

{jy (y{)Jy (y {)d{

1

2 (t-t')

(y2 ,2 '- +y )/4 (t-t)
e

i

yy
Iy_2 (t-t')

I
Y

is the Bessel function of the first kind, of imaginary

argument.

A.64)

Using A.62 and A.63 the solution for _ becomes

2 2
- Y-- w

4t

_(y,t) = e2t _ w e 4t Iy_2t o(W)d_
o

2

_ ¥
t 4 (t-t')

+ _ dt 'e "_2 (t-t') we
o o

2

4 (t-t')

yw _I 'IV 2 (t-t') Q (_'t)dw

The first term of A.64 corresponds to Mange's presentation of

Sutton's solution of the sourceless form of A.25 (Mange's

equation 5.1), and the second term corresponds to Mange's

equation 6.9, which he derived heuristically. If the
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2
dimensionless variable t in A.64 is replaced by _ t and

the transformation A. 53 between n and Q is used, these

terms become identical with those in Mange's paper.

Due to the analytic form of the Green's functions for

the case of the infinite atmosphere, the use of A.64 is to

be preferred over the solution A.53 for the semi-infinite

atmosphere when such use is physically justifiable.

Steady State Solutions

The steady-state solutions of A.25 are readily obtained

by deleting the time derivative from the transformed equations

A.43 and A.59. The density profiles are _uunu uu be

A.65)

1

n(y) = G s(y,y )y Q(y')dy'
o

with

A.66) Gs(y,y') = 2_ JY(PY)JY(PY )

p>O P y LP

for the semi-infinite case, and

A.67) n(Y) = _s(y,y')y Q(y')dy
o

wi th
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A.68) _ (y,y')s

!

J (y_)Jy(y _)

=i' Y g
o

d_

for the infinite case.

the function _ (y,y')
s

According to Watson (1944, p. 405)

of A.68 has the following form

A.69)

, y'7 Y ,
(y,y) = y

s 2yL y ]

' '(y,y) = y
s

<y

> y

for Re( v ) > 0 . The steady-state solution of the diffusion

equation for the infinite atmosphere thus takes the rela-

tively simple form

A.70)

y

n(y) = , , 'l-yQ(y,)dy

provided

heavier than the mean atmospheric mass. For

appears to be an unavoidable singularity in

y > 0 , i.e., the constituent under discussion is

y < 0 there

, and the
s

solution fails in this case. The steady-state diffusion

problem can still be solved, but the equation A.65 for the

semi-infinite atmosphere must be used.



Iii

APPENDIX B: VIBRATIONAL EXCITATION

Collisional excitation of the vibrational states of a

harmonic oscillator was first thoroughly treated by Jackson

and Mort (1932), who considered the one-dimensional collision

of a diatomic molecule with an atom and developed the dis-

torted-wave solution of the Schrodinger equation. Their

treatment was extended to the collision of two diatomic

molecules by Takayanagi (1952), and to the three-dimensional

case by Schwartz and Herzfeld (1954).

The solution of the problem given below differs from

that of these authors chiefly in the adoption of the scatter-

ing matrix point of view, as developed by Blatt and Bieden-

harn (1952) and employed by Arthurs and Dalgarno (1960) and

by Davison (1961) in connection with their treatment of

rotational transitions. It is hoped that some uniformity of

approach to the overall problem of collisional excitation

might be engendered by exhibiting the relevance of this
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method to vibrational transitions.

The computation will be carried through with reference

to vibrational excitation of the CO molecule.

The vibrational cooling term may be written as

B.I) Rv(COIz,T) = nM(z)n(COlz)_12(T)h _

where n (z)
M is the number density of molecules with which

the CO molecules may collide. The vibrational activation

coefficient is related to the collision cross section a12

by

B.2) ll12(T)-- <°12(w)w>

where w is the molecular velocity and the brackets repre-

sent an averaging over the Maxwellian velocity distribution.

The first step will be to derive an expression for o12

in terms of the scattering matrix, to be defined below. The

form of the intermolecular potential which appears in this

expression will then be discussed, and finally the scattering

matrix and o12 will be evaluated and the latter averaged

according to B.2 to obtain _12

The coordinates describing the collision will be taken

as r , the separation of the centers of mass of the collid-
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ing molecules, @ , the scattering angle, and _i ' _2 '

the vibrational coordinates of the molecules. We wish to

describe the scattering of a plane wave, carrying the initial

states, from a scattering center and will define the scatter-

ing matrix in terms of the asymptotic form of the wave func-

tion after the scattering.

The Hamiltonian of the system is the sum of the transla-

tional and vibrational energy operators plus the interaction

potential

h 2 V2 + H + H + V(r,{l,{ 2)
B.3) H = - 2_ r v I v 2

where _ is the reduced mass of the colliding molecules.

The vibrational Hamiltonians are

h 2 2 2 2

= V_ + 2_2_i_i
B.4) Hvl 2_i 1

with a similar form for Hv2 ml is the molecular vibra-

tion frequency. The subscript on the operator V indicates

the coordinate on which it operates.

Y (r,_l,_ 2 ) satisfies the equation

The wave function

B.5) (H - 6)_ = 0 ,
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where £ , the total energy of the system, is given by

B.6) _ =
h2k2

n
2_

1 1
+ (nI + _)h_ 1 + (n 2 + _)h_ 2

n I and n 2 are vibrational quantum numbers, and k n is the

wave number of the system, these being the values before

collision. The complete wave function for the system will be

written

B.7) _ (r,@,_l,_2) =

oo

> n'

_=O n{n 2

u . (r)
nn

r Yt, o (8)hnl ({l)hn2 ({2)

This is the partial wave expansion of _ The radial wave

functions are denoted by u
nn' , where the single subscripts

n and n' stand for the pairs of vibrational quantum

!

numbers n I , n 2 and n I ,
!

n 2 , primes denoting the values

after collision.

wave functions,

The

Y%o

h and h are harmonic oscillator

n_ n_

is a spherical harmonic, and A are
n'

constants to be determined. The sum is over all values of

n I and n 2 , before and after collision. The incident wave

is

B.8) Y. = h h e

in n I n 2

ik z

= h h

n

GO

>, (26+i) i6J _
n I n 2

6=o

(kr) P6 (cos 8)
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and the asymptotic form is, writing

B.9) = [2t+lq ½
Y$, o L-_'-3 P$ (cos e )

B.IO) _.
in

92 -i (knr

_(2l+1) ½i (_+1) Ee
= hnlhn2 knr

4`

i (knr
- e

_)

3)

Asymptotically, the radial function
&

U , (r)
nn

must therefore

consist of an incoming spherical wave and elastically

scattered outgoing spherical wave in the entrance channel

and an inelastically scattered outgoing spherical wave in the

exit channel. The terms "entrance" and "exit" channel are

used, as in Blatt and Biedenharn (1952), to denote sets of

quantum numbers which specify the configuration of the system

before and after collision. We thus write the asymptotic

4,
form of u as

nn '

4`TI

-i (knl - _)
B.II) u (r) = 6 , e

nn ° nn

k 92 i (kn, r _)

- _ I S6(n'n') e
n'

This is the definition of the scattering matrix Si(n,n ')
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used by Arthurs and Dalgarno (1960). To obtain the scattered

wave, the incident wave B.10 is subtracted from B.7. The

summation in B.10 may be extended to a sum over n' if the

right hand side is first multiplied by 6
nn'

-i (knr _ ) i (knr 2
multiplying e and e

The terms

in the expres-

sion for the scattered wave function may then be combined,

and the condition that there be no ingoing scattered spherical

wave determines the coefficients A _ The results for A i
n' n'

and the scattered wave are

½
A _ _ ½ 6+i

B.12) n' = _ (2_+i) i
n'

_ n (26+i) ½ i (n,n)
B. 13) Y sc - kn

6 n'

where

i(k r - _)
n

e

r
h , h ,

Y6, o n I n 2

B.14) T6(n,n ') = _ - S6(n,n ,)
nn'

The total scattering cross section is given by the number of

particles scattered per unit time divided by the incident

flux. The number scattered per unit time is
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B 15) N ih _ ( * * r 2• = VY - Y VY ) d_sc 2_ "Ysc sc sc sc o

where r is the radius of a sphere centered on and distanto

from the scattering center and d_ is the element of solid

angle. Using the y of B.13 in B.15 results insc

B.16)
_k ®

N = n' _ 26+1) (n,n)i
sc 2_ k k

n n'
_=o

and dividing by the incident flux

total cross section

we obtain the

B.17) o (n,n') = nk 2 _(26+i)IT 6(n,n')1 2n

_.,=o

where k = i/k
n n

We are interested in the cross section

for a specific transition in which the final state n' is

specified and so the sum over n' in B.13 has been dropped.

Knowledge of the scattering matrix must be obtained by

solving the Schrodinger equation appropriate to the system.

If B.7 is substituted in B.6, the result multiplied by

y&,ohn,,hn . and integrated over d_id_2d_ , we obtain the
12

%
equation for the radial functions u (r)

nn '
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B.19)
/n", iVin'>, = _hn_({l)hn2({2)V(r,_l,_2)hni({l)hn2({2)d{id{2

Equations B.18 are the exact equations for the radial functions

t

Unn,, , but they cannot be solved in general in terms of known

functions. Before discussing approximations which render a

solution of B.18 possible, we will discuss the form of the

intermolecular potential appearing in these equations.

It is customary to divide intermolecular forces into two

types: long-range, attractive (van der Waals) forces, and

short-range, repulsive (valence or chemical) forces. The

long-range forces can be rigorously described in terms of

physical properties of the separated molecules, but no such

general treatment exists for the short-range forces. The

usual practice is to adopt a semi-empirical potential func-

tion for use in calculations, the parameters upon which this

function depends being determined from measured physical

properties. It can be argued that transition probabilities

in collision depend essentially on the short-range, repulsive

forces rather than the long-range forces, and for this reason
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earlier investigators assumed a simple exponential interac-

tion law for mathematical convenience. The long-range forces

do, however, have the effect of accelerating the colliding

molecules before the short-range forces come into play and

will thus affect the temperature dependence of physical

quantities, such as the vibrational deactivation coefficient,

calculated using the potential function. For this reason, it

is desirable to take the van der Waals forces into explicit

account.

One of the most commonly used potential functions is that

of Lennard-Jones

B.20)

r 12 r 6

V(r) = 4e{L_ - E'-_3

The negative term represents the attraction, the sixth power

being the theoretically calculated form of this interaction.

The twelfth power form of the much steeper repulsive poten-

tial is chosen for mathematical convenience. The form of this

function is sketched in Fig. BI. e is the minimum value of

V , and r is the distance at which V = 0 The effect of
O

the repulsive part of the potential may be retained, and the

convenience of an exponential form u_.ilized by fitting an

exponential curve to the Lennard-Jones potential.

Methods of fitting an exponential to the Lennard-Jones
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V(r)

£
m

r

Fig. BI. Lennard-Jones potential curve. E is the
m

most effective energy of collision at the classical distance

of closest approach r .
c



121

curve were devised by Schwartz e__t a__l. (1952) and by DeWette

and Slawsky (1954) and discussed by Herzfeld and Litovitz

I

(1959). In the method of Schwartz et al., the two curves

are required to have the same slope at a common point, whereas

DeWette and Slawsky obtain a fit by having two points in

common. This latter method is somewhat simpler and will be

employed. Both me _^;-_**Vuolead to results in reasonable agree-

ment with experimental measurement of relaxation times.

In both methods one point of fitting is that for the

most effective energy of collision

distance of closest approach r
C

E at the classical
m

The energy E is defined
m

1 2
by E = - m w where w is the velocity at which ciassi-

m 2 m m

cally, a vibrational transition is most likely to occur. This

velocity exists due to the fact that the probability of energy

transfer in collision increases with increasing velocity, but

the number of particles with a given velocity decreases.

Hence, at some value of w the probability of energy transfer

is a maximum. Herzfeld and Litovitz show that E is given
m

by

B.21) E 1 (e')1/3 2/3
m = 2 (kT)

where



122

B.22) e' = _m(2,_i')

2

_m is the reduced mass of the diatomic molecule, v its

vibrational frequency, and 6' a characteristic length, c'

is twice the energy a molecule would have if it were vibrating

with amplitude _' and frequency _ r and
o

e are given

for various gases by Hirschfelder, Curtiss, and Bird (1954),

and r is calculated from
c

B.23) E
m

r 12 r 6

°] -EO]}
C c

or

B.24)
r _ c
c

Since the Lennard-Jones curve has a minimum at -e , the

exponential which can be substituted for this potential along

its sweep part must have its horizontal asymptote at V = -c

The exponential curve

- r/L
B.25) V(r) = V e - e

o

satisfies this requirement and contains two constants, V
o
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and L , to be determined so that it crosses the Lennard-

Jones curve at two points. To fit the curves at the point

mentioned above we have

-r /L
C

B.26) E + C = V e
m o

if we also require the point

then

E = 0 , r = r
o

to be common,

-r /L
O

B.27) V e - e = 0
O

Dividing B.24 by B.25 and solving for r /L
• ' O

results in

B. 28) r E _/E -i/6}o [_ ]{ [I m_- = in + 1 l - (l + --_ + l)_l

In practice L is obtained first from B.28 and then V fromO

B.27. An equation such as B.25 represents the potential

between two atoms, r being their separation. In describing

molecular collisions this potential must be stated in terms

of coordinates referring to the molecules. A method of eval-

uating the intermolecular potential has been given by

Takayanagi (1954). The repulsive part of the intermolecular

potential may be expressed approximately by the sum of the

interatomic repulsive potentials between atoms belonging to
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different molecules. With reference to Fig. B2 we write

B.29) V = (r ) + + ) + (r VI3 13 V14(r14) V23 (r23 V24 r24)

th .th
where r is the distance between the i and 3 atoms.

13

Denote the internuclear distances in the molecules by _l

and
_2 and the distance between the centers of mass by R

If the internuclear distances are both small compared with

the intermolecular distance R , the function B.29 can be

expanded as

B.30) V :
r

xly3z k ,6 ,m ,n
a a a Xb Yb Zb

_ >. i,j,k, _,m,n,

a=l,2 b=3,4 ijktmn

where

5 i+j+k+%+m+n Vab(r)

× . . n ]
[_xlSy3_zk_x,6_y,m_z , x =y =z =0

x'=y'=z'=O

2 2 2 2
B.31) r = (x'-x-R) + (y'-y) + (z'-z)

It is convenient, after writing out a few terms of B.30 in

Cartesian coordinates, to transform V to a function of
r

cos X1 , cos X2 , and cos X12 , where X12 is the angle
^ ^

between the unit vectors {i ' {2 along the molecular axes.
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The transformation formulae are

B.32)

m 1
=-- _i

Xl m12

m I 2

[GYl

cos X1

2 2

_i(i - cos XI)

ylY3 + ZlZ 3 =

m2m 4

m12m34
_i_2 (c°s XI2 - cos X1 cos X2)

The term c
2

in B.25 may be absorbed in k when V(r)

appears in the Schrodinger equation, i.e., k 2 is replaced

by k 2 + 2_e/_ 2 The interatomic potential terms in B.29

may thus be taken to have the form

-r/L
B.33) V(r) = V' e

o

The result of carrying the expansion of V to second order is

-R/L

B.34) V(R,{I,{ 2) = 4V'o e

2V' m_-m_

o V I z.

+ -_-L_ilCOSXl
m_-m---4m34_ 2cosx2_e -R/L

, 2 2 2 2
V m _ m_+m _

+ _I-7 -_ILc°s×l+_C,_cos2×l__j 3 4_[_os2 +_l_cos__ ×2)i
m34L m12

(ml-m 2 ) (m3-m 4)

m12m34

-R/L
L s

_l_2[cosxlcosx2+_(c°sxl2-C°SXl c° X2)_ e
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Only the first term in this expansion contributes to the

diagonal matrix elements in B.18, For a collision such as

that of a CO molecule with a structureless particle, i.e.,

with a molecule whose internal coordinates are unaltered by

collision, only the term in _i cos X1 contributes to the

off-diagonal elements. Higher order terms in B.34 give rise

to matrix =_LL_*^I.... _ connecting the ground state with vibra-

tional states higher than the first and these are inaccessible,

relative to the first vibrational state, at thermal energies.

We assume that the only part of the intermolecular force

which gives rise to vibrational transitions is the component

along the internuclear axis. 'i'hls As

^ _V ^ ^ 2V' ml-m 2 2 -R/L

_ = o cos X1 _i e
B.35) F-_I 5R R'_I L m12

Averaged over orientations of the CO molecule this is

V' ml-m 2 -R/L

j. ^ 2 o _i eB.36) F'_I d_ = 3 L m12

The spherically svmmetric form of the potential which we may

use in the vibrational calculation is thus

-R/L

B.37) V(R,_) _ V (l + a L_) eo
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where

1 ml-m2
B.38) V = 4V' and a =

o o 6 m12

We now turn to the problem posed by equation B.18. The

first step in obtaining a solution is to make what is known

as the distorted wave approximation. In the one-dimensional

case this approximation would be sufficient to effect a solu-

tion. In addition to off-diagonal matrix elements in B.19

being small relative to diagonal elements, we assume that

the amplitudes of inelastically scattered waves are small,

and thus that products of small quantities appearing in B.18

may be ignored. The set of equations B.18 may then be

written as two coupled equations for the elastically and

inelastically scattered waves

B.39) L d 2 6 (%+1) + k 22 2 n
dr r

2__ <nlVln_ -i u 6 (r) : 0

h2 nn

_ d 2 6(%+i) + k 2B.40)
-5_ 2 n'

dr r
"" ] u62_ <n,i Vln > (r)

h2 ' nn '

= 2__ <nIV In'_ u 6 (r)

h2 nn

Primed quantities refer to the inelastically scattered wave.

% &
(r) and , (r)Denote by Wnn Wn n the solutions of B.39 and

of the homogeneous equation corresponding to B.40, respec-
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tively, which have the asymptotic behavior

B.41) Wnn' (r) _ sin(knr 2 + _nn ')

_) & (r) be the solutions of these equations whichand let
nn'

behave asymptotically as

B.42)
1 i (k ,r + , )n 2 _nn

nn' (r) = k e
n'

Then the solution of the inhomogeneous equation B.40 is, from

Mott and Massey (1965),

&
B.43) u

nn
(r) = 6, nn,Wnn (r) + (i- 6 ) 2__

' nn ' h2

x _Ji _ r & & ,drnn' Wnn , <nIVIn'> _nn
o

CO

+ Wnn ' nn " "
r

which behaves asymptotically as

B.44) Unn, (r) _ _nn,Sin(kn0r 2

%

+ iqnn, )

+ (i- 6
nn

i(k ,r
n

,)e

&_

2
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where

00

B.45) 86 2_ C 6 6 dr

nn' = _2 k _o_nn , _niVin_ Wnn
n'

We recall that the scattering matrix was defined in

terms of the asymptotic behavior of u (B. ll) . Comparing
nn '

B.11 and B.43, we find that the scattering matrix, in the

distorted wave approximation, is given by

B.46)

i(_+ _
_nn _nn

S6(n,n ') = e ')[_n' ½ 6 _6 ]
k_] _6nn (l-2iSnn)+2i' ' nn '

Substituting B.46 into B.17, using B.14, results in the

following total collisional cross section

B.47)

k OD

o(n,n') = 4n kT (26+i) nn'l
n 6=o

To evaluate Snn' from B.45, the differential equation

B.39 for the function w , (r) must first be solved. As it
nn

stands, B.39 cannot be integrated in terms of known functions.

Integration is possible, however, if a further approximation,

known as the method of modified wave number (Takayanagi,

1954), is made. We observe that the centrifugal potential

6(6+i)/r 2 varies slowly compared with the repulsive part of

the intermolecular potential, and will therefore assume that
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the only effect of the long-range forces, centrifugal as

well as attractive, is to shift the effective collision

ve_oclcy_-- from w to w , where
o

2 2
B.48) w = w

o r
c

The effect of the van der Waa_ forces has already been

absorbed in the wave number k since the potential was

given the form B_30. The same is now done with the centri-

fugal potential, and B.37 is written

[_r2 -r/Lq
d2 .2_ 2__Ve

B.4g) + K _2 o J Wnn
, (r) = 0

where B.35 for V(R,_) has been used along with orthonor-

mality of the oscillator eigenfunctions. Changing the inde-

pendent variable in B.47 to

/2_/Vo -r/2L
B.50) y = 2L :-- e

_i 1_2

B.49 becomes

d 2 w dw _
nn ' 1 nn '

B.51) +
2 y dy

dy

•C.'22 Wnn '

Y

= 0

where q' = 2Lk This is Bessel's equation of imaginaryn'



132

argument iy and imaginary index iq' , and its solution

has been presented by Jackson and Mort (1932). The solution

which satisfies the boundary conditions

B.52)

6
Wnn, (r) _ sin(kn,r + _nn') as y _ 0

Wnn, (r) _ 0 as y

may be written

(y) = [q'sinh nq'1½B. 53) Wnn ' n Kiq ' (y)

With this solution of the Schrodinger equation, the

2
factor inn 'I in B.47 can be evaluated. The

dence of this term is implicit in the wave number.

B 37 for V(R {) and B.43 for 8 _- , we have
nn '

-depen-

Using

B 54) _6nn 2_V L J'_
_ o Hol _ w_ e-r/Ldr

• , Wnn ,_2 k a (r) nn (r)
O

n'

and with the variable transformation given by B.50, this is

B.55) _6 - a Hol [ j½
nn' 2rt 2 k ,L 2 gg' sinh g sinh g'

n

'Yo

× j Kiq
O

(y) Kiq , (y) ydy ,
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where g = _q and

ties 8 = h_/K and

f

Yo = 2L/(2_Vo)/_2 "
In terms of quanti-

8' = c'/_ , the upper limit of this

integral may be written

B. 56)

where is Boltzmann's constant. V is determined from
o

-r /L
c

B.57) V e = E + ¢
o m

or

V -r /L IF@_I/3T co c

• -- e = 2L_'J + -B 58) _

Herzfeld and Litovitz (1959) give ¢/K _ 100°K and, typically

8 > 1000°K . Hence, the second term on the right hand side

of B.58 may be neglected and

B. 59) 1 T _ 2/3 r /2L
c

yo = _ _ e

For various collision processes the factor in front of

the exponential varies from about 3 to 60 and 8 < r /2L < ii;c

hence, the upper limit Yo in B.55 may, without risk of

appreciable error, be replaced by _ With this done the
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integral may be evaluated with the result

H
_6 = a ol -- 2 g2)

B.60) nn' 8_2 L2k 4'gg' (g' -
in

(sinh g' sinh g)

cosh g'-cosh g

½

g = 2_L/k where k is the DeBroglie wavelength. At thermal

energies for an H 2 molecule k _ .175_ and is shorter for

heavier particles. Generally, L _ 0.2_ , hence, g _ 7 and

sinh g _ cosh g _ _e g With this approximation the square of

B.60 becomes

I I
2 Hol , 2_g2 2 e g-g2 a

B.61) l_nn'[L = _2i )(L2k 2 gg (g ), (l-e g-g )
n

This expression is independent of the sign of g - g'

We will assume that g - g' as well as g and g' is much

greater than one. This assumption restricts the validity of

what follows to collisions in which a large change in trans-

lational energy occurs. With this assumption we have

[8_i 2 Hol I 2 g2 - ig-g'l
_ _ 2 a - , , ,

B.62) I nn'i = (L2kn
, ,)2 gg (g - ) e

We will write the cross section of B.47 as

B.63) o(n,n') : 26+i) Onn,

t

o
nn'

where is defined as
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4'
B.64) a = 4n

nn ' I-
k 3 I nn'
n

Using B.62 this is

4' a2 Holl 2
_ 1 2_g2 2 -Ig-g'I

B.65) ann , 16_ 3 L 4 k k 3 gg' (g' ) e

n' n

It must be recalled that the 4' -dependence on the right hand

side is implicit in the wave number, which means it is also

contained in the factors g and g' . We can write out this

dependence in explicit form as

B.66)

k 2 2 2__ 4'(4,+1)

' = kl + _2 4r 2

c

k 2 = k 2 + 2__ 4'(4'+1)

o i_2 4r 2
c

where k I and k are the wave numbers which would pertaino

in the absence of long-range forces. Using B.66 we have

B.67) g' - g = gl - go = (Pl - Po ) = - 2_hv

Also gg'/kk' = 4n2L 2. At this point the cross section is

B.68) 04' a2 H°l 1 [¢,]2 Ig-g 'i
nn' - _ L 2 k2 _ e-

n
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where B.21, defining c' , has been used. To express the

cross section as a function of molecular speed, we write

I g - g'i 2_n p,2 2= h iP - p'i , and with = p - 2_hv

7_ i'B.69) iP - P'! = p 1 - 1 - w 2
• p 2_w

As a function of

%
B.70) o

nn'

w then

i i2 22 h 2 Hol e' 1

a[_ ......L___
= _- L 2 W-_ e

4_iLV[l + hv -I

w t 2_w2J

The long-range forces, van der Waals and centrifugal, are

still contained implicitly in w These may be taken into

account after
%

o
nn'

is averaged over the Maxwellian velocity

distribution.

The integral which must be evaluated is

B .71)

2
_w _ h_

2_w dw

I = 4nl tl - .Iwe
o

As a first step in obtaining an approximate evaluation of this

integral, Herzfeld and Litovitz (1959) divide the integrand

into two factors, i.e., they write the in_egrand as

2
4_2L_

-[ 2_T + w -I
B.72) f(w) e
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The exponential factor is sharply peaked at some velocity

w and the argument of the exponential may be expandedm

about this velocity. The factor f(w) is evaluated at

w = w and removed from the integral sign. Denoting the
m

argument of the exponential by g(w) we write

B.73) g(w) = g(w m) + g' (wm) (w-w m) + ig0, (Wm)(W_Wm)2 + ...

the primes denoting differentiation and

2 42L_
g(w) = _w +

2KT w

B.74) g' (w) = _w 4_2L_
_tT 2

w

8_2L_
g" (w) = -_ +

nT 3
w

Setting g' (w) = 0

about the velocity

we find that the exponential is peaked

B.75) w
m

Using B.75 along with B.22 we have

_ 3 e' 1/3

B.76) e -g(w) = e 21_ e- 23

2
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The integral B.71 may now be evaluated with the result that

0nn,

i 2

a 2 h 2 ¢' 2_¢, 1/6 1/2 Hol i

1/3
3 C'

21_T
X e

The existence of long-range forces has not yet been

taken into account. We may assume that Maxwell's distribu-

tion law is valid, but that the long-range forces have the

effect of changing the local density of colliding molecules

(e-c_)/_T _ h 2 _(_+i) The

by a factor e , where e6 2_ r 2
C

averaged cross section in B.77 should therefore also be

changed by this factor, and we have

t

2 T% 2 , 2_e, 1/6 1/2 IH ol 2• i a -

B.78) <(_nn,W} - I_] [_] [_-T], '_Tl[-=}/-I L 2,/3- .....

x e

3j e' ]1/2 hv +

2L_'TJ 2_T _T

B.78 must still be summed over 6 according to B.63 before

the final expression for _(T) can be written. The only

-dependence on the right hand side of B.78 is in the term

- e z/zT
e , and the sum to be calculated is just

$' -ez/KT(26+i)e If the angular momentum levels are close

%
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in energy, relative to the thermal energy, the sum may be

replaced by the integral

B.79)
-e 6/KT 2_r 2 m -e _/KT 2ur 2

_(2_+i) _%2 _oe -_ e _ de6 _2
6

_T

With this assumption the expression for _](T)

_ 2_T
B.80) _(T) _ _ [_ I_l r2ec 2_I

is finally

+ --
_T

With the values e'/K = 1.08 , IHol[2/L 2 = 1.19 x 10 -2 ,

e/K = 100°K , r c = 3.69 x 10 -8 as given by Herzfeld and

Litovitz (1959), and using _ appropriate to a CO-N 2 system,

we have

B.81) -17 TI/3 e
_co(T) = 2.4 x 10

195 1500

T173 T

This activation coefficient is so small that radiative cool-

ing from vibrational states of CO will be negligible.
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